Skip to contents

Numeric—function to automatically build 23 individual models and 17 ensembles then return the results to the user

Usage

Numeric(
  data,
  colnum,
  numresamples,
  how_to_handle_strings = c(0("none"), 1("factor levels")),
  do_you_have_new_data = c("Y", "N"),
  save_all_trained_models = c("Y", "N"),
  remove_ensemble_correlations_greater_than,
  use_parallel = c("Y", "N"),
  train_amount,
  test_amount,
  validation_amount
)

Arguments

data

data can be a CSV file or within an R package, such as MASS::Boston

colnum

a column number in your data

numresamples

the number of resamples

how_to_handle_strings

0: No strings, 1: Factor values, 2: One-hot encoding, 3: One-hot encoding AND jitter

do_you_have_new_data

"Y" or "N". If "Y", then you will be asked for the new data

save_all_trained_models

"Y" or "N". If "Y", then places all the trained models in the Environment

remove_ensemble_correlations_greater_than

Enter a number to remove correlations in the ensembles

use_parallel

"Y" or "N" for parallel processing

train_amount

set the amount for the training data

test_amount

set the amount for the testing data

validation_amount

Set the amount for the validation data

Value

a real number

Examples

# Note that examples take about one minute each to run to completion
Numeric(data = Boston_housing,
  colnum = 9,
  numresamples = 2,
  how_to_handle_strings = 0,
  do_you_have_new_data = "N",
  save_all_trained_models = "N",
  remove_ensemble_correlations_greater_than = 1.00,
  train_amount = 0.60,
  test_amount = 0.20,
  validation_amount = 0.20)



#> [1] 
#> [1] "Resampling number 1 of 2,"
#> [1] 
#> Number of parameters (weights and biases) to estimate: 32 
#> Nguyen-Widrow method
#> Scaling factor= 0.7016246 
#> gamma= 29.0744 	 alpha= 4.1223 	 beta= 14908.55 
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> [1]	train-rmse:8.672059	test-rmse:9.438856 
#> [2]	train-rmse:6.152745	test-rmse:6.757185 
#> [3]	train-rmse:4.391829	test-rmse:4.949025 
#> [4]	train-rmse:3.171701	test-rmse:3.772709 
#> [5]	train-rmse:2.337117	test-rmse:3.056945 
#> [6]	train-rmse:1.750802	test-rmse:2.629145 
#> [7]	train-rmse:1.357173	test-rmse:2.429477 
#> [8]	train-rmse:1.112720	test-rmse:2.326774 
#> [9]	train-rmse:0.937890	test-rmse:2.251303 
#> [10]	train-rmse:0.842939	test-rmse:2.234661 
#> [11]	train-rmse:0.758184	test-rmse:2.224523 
#> [12]	train-rmse:0.690180	test-rmse:2.221965 
#> [13]	train-rmse:0.641760	test-rmse:2.207268 
#> [14]	train-rmse:0.600522	test-rmse:2.199320 
#> [15]	train-rmse:0.564462	test-rmse:2.191745 
#> [16]	train-rmse:0.533005	test-rmse:2.183271 
#> [17]	train-rmse:0.514395	test-rmse:2.177992 
#> [18]	train-rmse:0.489369	test-rmse:2.174245 
#> [19]	train-rmse:0.454472	test-rmse:2.154759 
#> [20]	train-rmse:0.425754	test-rmse:2.154337 
#> [21]	train-rmse:0.413945	test-rmse:2.155661 
#> [22]	train-rmse:0.383929	test-rmse:2.154634 
#> [23]	train-rmse:0.370814	test-rmse:2.156923 
#> [24]	train-rmse:0.343605	test-rmse:2.137285 
#> [25]	train-rmse:0.319275	test-rmse:2.125506 
#> [26]	train-rmse:0.309275	test-rmse:2.129290 
#> [27]	train-rmse:0.293044	test-rmse:2.130203 
#> [28]	train-rmse:0.282592	test-rmse:2.132242 
#> [29]	train-rmse:0.275252	test-rmse:2.130917 
#> [30]	train-rmse:0.267014	test-rmse:2.131481 
#> [31]	train-rmse:0.255299	test-rmse:2.128396 
#> [32]	train-rmse:0.246303	test-rmse:2.129907 
#> [33]	train-rmse:0.240403	test-rmse:2.132613 
#> [34]	train-rmse:0.226540	test-rmse:2.126627 
#> [35]	train-rmse:0.216594	test-rmse:2.124497 
#> [36]	train-rmse:0.204977	test-rmse:2.123194 
#> [37]	train-rmse:0.195543	test-rmse:2.119193 
#> [38]	train-rmse:0.188133	test-rmse:2.117895 
#> [39]	train-rmse:0.182978	test-rmse:2.109969 
#> [40]	train-rmse:0.175473	test-rmse:2.114348 
#> [41]	train-rmse:0.170247	test-rmse:2.112939 
#> [42]	train-rmse:0.165662	test-rmse:2.119608 
#> [43]	train-rmse:0.156838	test-rmse:2.119445 
#> [44]	train-rmse:0.147199	test-rmse:2.116993 
#> [45]	train-rmse:0.143322	test-rmse:2.115801 
#> [46]	train-rmse:0.142190	test-rmse:2.115630 
#> [47]	train-rmse:0.136266	test-rmse:2.113574 
#> [48]	train-rmse:0.130227	test-rmse:2.112950 
#> [49]	train-rmse:0.126008	test-rmse:2.112991 
#> [50]	train-rmse:0.121772	test-rmse:2.112085 
#> [51]	train-rmse:0.120031	test-rmse:2.111994 
#> [52]	train-rmse:0.117313	test-rmse:2.111213 
#> [53]	train-rmse:0.114091	test-rmse:2.111491 
#> [54]	train-rmse:0.108971	test-rmse:2.107528 
#> [55]	train-rmse:0.106118	test-rmse:2.107551 
#> [56]	train-rmse:0.103322	test-rmse:2.107101 
#> [57]	train-rmse:0.101635	test-rmse:2.107626 
#> [58]	train-rmse:0.099125	test-rmse:2.108066 
#> [59]	train-rmse:0.096801	test-rmse:2.107140 
#> [60]	train-rmse:0.095504	test-rmse:2.106842 
#> [61]	train-rmse:0.091867	test-rmse:2.107061 
#> [62]	train-rmse:0.086652	test-rmse:2.105820 
#> [63]	train-rmse:0.085660	test-rmse:2.103970 
#> [64]	train-rmse:0.081174	test-rmse:2.104043 
#> [65]	train-rmse:0.080254	test-rmse:2.105653 
#> [66]	train-rmse:0.079056	test-rmse:2.106071 
#> [67]	train-rmse:0.076620	test-rmse:2.105946 
#> [68]	train-rmse:0.074326	test-rmse:2.106405 
#> [69]	train-rmse:0.071799	test-rmse:2.103912 
#> [70]	train-rmse:0.070297	test-rmse:2.103901 
#> [1]	train-rmse:8.672059	validation-rmse:9.248575 
#> [2]	train-rmse:6.152745	validation-rmse:6.724812 
#> [3]	train-rmse:4.391829	validation-rmse:4.987419 
#> [4]	train-rmse:3.171701	validation-rmse:3.825682 
#> [5]	train-rmse:2.337117	validation-rmse:3.086599 
#> [6]	train-rmse:1.750802	validation-rmse:2.625707 
#> [7]	train-rmse:1.357173	validation-rmse:2.341788 
#> [8]	train-rmse:1.112720	validation-rmse:2.182632 
#> [9]	train-rmse:0.937890	validation-rmse:2.086531 
#> [10]	train-rmse:0.842939	validation-rmse:2.029346 
#> [11]	train-rmse:0.758184	validation-rmse:2.005768 
#> [12]	train-rmse:0.690180	validation-rmse:1.982328 
#> [13]	train-rmse:0.641760	validation-rmse:1.967961 
#> [14]	train-rmse:0.600522	validation-rmse:1.952020 
#> [15]	train-rmse:0.564462	validation-rmse:1.932925 
#> [16]	train-rmse:0.533005	validation-rmse:1.925439 
#> [17]	train-rmse:0.514395	validation-rmse:1.919393 
#> [18]	train-rmse:0.489369	validation-rmse:1.910180 
#> [19]	train-rmse:0.454472	validation-rmse:1.908855 
#> [20]	train-rmse:0.425754	validation-rmse:1.909573 
#> [21]	train-rmse:0.413945	validation-rmse:1.906480 
#> [22]	train-rmse:0.383929	validation-rmse:1.904949 
#> [23]	train-rmse:0.370814	validation-rmse:1.900377 
#> [24]	train-rmse:0.343605	validation-rmse:1.895194 
#> [25]	train-rmse:0.319275	validation-rmse:1.889892 
#> [26]	train-rmse:0.309275	validation-rmse:1.888411 
#> [27]	train-rmse:0.293044	validation-rmse:1.887381 
#> [28]	train-rmse:0.282592	validation-rmse:1.884272 
#> [29]	train-rmse:0.275252	validation-rmse:1.883587 
#> [30]	train-rmse:0.267014	validation-rmse:1.883730 
#> [31]	train-rmse:0.255299	validation-rmse:1.883102 
#> [32]	train-rmse:0.246303	validation-rmse:1.884843 
#> [33]	train-rmse:0.240403	validation-rmse:1.883799 
#> [34]	train-rmse:0.226540	validation-rmse:1.880617 
#> [35]	train-rmse:0.216594	validation-rmse:1.880885 
#> [36]	train-rmse:0.204977	validation-rmse:1.881063 
#> [37]	train-rmse:0.195543	validation-rmse:1.879183 
#> [38]	train-rmse:0.188133	validation-rmse:1.879829 
#> [39]	train-rmse:0.182978	validation-rmse:1.879483 
#> [40]	train-rmse:0.175473	validation-rmse:1.875394 
#> [41]	train-rmse:0.170247	validation-rmse:1.874632 
#> [42]	train-rmse:0.165662	validation-rmse:1.874871 
#> [43]	train-rmse:0.156838	validation-rmse:1.873415 
#> [44]	train-rmse:0.147199	validation-rmse:1.874174 
#> [45]	train-rmse:0.143322	validation-rmse:1.873496 
#> [46]	train-rmse:0.142190	validation-rmse:1.873346 
#> [47]	train-rmse:0.136266	validation-rmse:1.872541 
#> [48]	train-rmse:0.130227	validation-rmse:1.871743 
#> [49]	train-rmse:0.126008	validation-rmse:1.871542 
#> [50]	train-rmse:0.121772	validation-rmse:1.871289 
#> [51]	train-rmse:0.120031	validation-rmse:1.871249 
#> [52]	train-rmse:0.117313	validation-rmse:1.871138 
#> [53]	train-rmse:0.114091	validation-rmse:1.870434 
#> [54]	train-rmse:0.108971	validation-rmse:1.870209 
#> [55]	train-rmse:0.106118	validation-rmse:1.869854 
#> [56]	train-rmse:0.103322	validation-rmse:1.869964 
#> [57]	train-rmse:0.101635	validation-rmse:1.869437 
#> [58]	train-rmse:0.099125	validation-rmse:1.869641 
#> [59]	train-rmse:0.096801	validation-rmse:1.869278 
#> [60]	train-rmse:0.095504	validation-rmse:1.869140 
#> [61]	train-rmse:0.091867	validation-rmse:1.869391 
#> [62]	train-rmse:0.086652	validation-rmse:1.868535 
#> [63]	train-rmse:0.085660	validation-rmse:1.869984 
#> [64]	train-rmse:0.081174	validation-rmse:1.869602 
#> [65]	train-rmse:0.080254	validation-rmse:1.869450 
#> [66]	train-rmse:0.079056	validation-rmse:1.869270 
#> [67]	train-rmse:0.076620	validation-rmse:1.868947 
#> [68]	train-rmse:0.074326	validation-rmse:1.867989 
#> [69]	train-rmse:0.071799	validation-rmse:1.867720 
#> [70]	train-rmse:0.070297	validation-rmse:1.867792 
#> [1] 
#> [1] "Working on the Ensembles section"
#> [1] 
#> Number of parameters (weights and biases) to estimate: 54 
#> Nguyen-Widrow method
#> Scaling factor= 0.704307 
#> gamma= 21.6953 	 alpha= 7.0486 	 beta= 4606.234 
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> [1]	train-rmse:9.375610	test-rmse:9.291363 
#> [2]	train-rmse:6.653688	test-rmse:6.604651 
#> [3]	train-rmse:4.722735	test-rmse:4.688754 
#> [4]	train-rmse:3.353117	test-rmse:3.330016 
#> [5]	train-rmse:2.381159	test-rmse:2.366978 
#> [6]	train-rmse:1.691877	test-rmse:1.684374 
#> [7]	train-rmse:1.203320	test-rmse:1.201802 
#> [8]	train-rmse:0.855098	test-rmse:0.855418 
#> [9]	train-rmse:0.608626	test-rmse:0.610630 
#> [10]	train-rmse:0.432853	test-rmse:0.435232 
#> [11]	train-rmse:0.308131	test-rmse:0.310708 
#> [12]	train-rmse:0.219510	test-rmse:0.221943 
#> [13]	train-rmse:0.156590	test-rmse:0.157822 
#> [14]	train-rmse:0.111618	test-rmse:0.113201 
#> [15]	train-rmse:0.079494	test-rmse:0.080796 
#> [16]	train-rmse:0.056700	test-rmse:0.057997 
#> [17]	train-rmse:0.040565	test-rmse:0.041713 
#> [18]	train-rmse:0.029106	test-rmse:0.030098 
#> [19]	train-rmse:0.020930	test-rmse:0.021865 
#> [20]	train-rmse:0.015203	test-rmse:0.016209 
#> [21]	train-rmse:0.011182	test-rmse:0.012476 
#> [22]	train-rmse:0.008241	test-rmse:0.009965 
#> [23]	train-rmse:0.006183	test-rmse:0.008299 
#> [24]	train-rmse:0.004717	test-rmse:0.007304 
#> [25]	train-rmse:0.003640	test-rmse:0.006665 
#> [26]	train-rmse:0.002958	test-rmse:0.006336 
#> [27]	train-rmse:0.002383	test-rmse:0.006013 
#> [28]	train-rmse:0.001956	test-rmse:0.006013 
#> [29]	train-rmse:0.001595	test-rmse:0.005879 
#> [30]	train-rmse:0.001364	test-rmse:0.005929 
#> [31]	train-rmse:0.001132	test-rmse:0.005850 
#> [32]	train-rmse:0.000954	test-rmse:0.005798 
#> [33]	train-rmse:0.000783	test-rmse:0.005847 
#> [34]	train-rmse:0.000678	test-rmse:0.005917 
#> [35]	train-rmse:0.000566	test-rmse:0.005858 
#> [36]	train-rmse:0.000476	test-rmse:0.005815 
#> [37]	train-rmse:0.000417	test-rmse:0.005858 
#> [38]	train-rmse:0.000374	test-rmse:0.005844 
#> [39]	train-rmse:0.000332	test-rmse:0.005851 
#> [40]	train-rmse:0.000303	test-rmse:0.005864 
#> [41]	train-rmse:0.000303	test-rmse:0.005864 
#> [42]	train-rmse:0.000303	test-rmse:0.005864 
#> [43]	train-rmse:0.000303	test-rmse:0.005864 
#> [44]	train-rmse:0.000303	test-rmse:0.005865 
#> [45]	train-rmse:0.000303	test-rmse:0.005865 
#> [46]	train-rmse:0.000303	test-rmse:0.005865 
#> [47]	train-rmse:0.000303	test-rmse:0.005865 
#> [48]	train-rmse:0.000303	test-rmse:0.005865 
#> [49]	train-rmse:0.000303	test-rmse:0.005865 
#> [50]	train-rmse:0.000303	test-rmse:0.005865 
#> [51]	train-rmse:0.000303	test-rmse:0.005865 
#> [52]	train-rmse:0.000303	test-rmse:0.005865 
#> [53]	train-rmse:0.000303	test-rmse:0.005865 
#> [54]	train-rmse:0.000303	test-rmse:0.005865 
#> [55]	train-rmse:0.000303	test-rmse:0.005865 
#> [56]	train-rmse:0.000303	test-rmse:0.005865 
#> [57]	train-rmse:0.000303	test-rmse:0.005865 
#> [58]	train-rmse:0.000303	test-rmse:0.005865 
#> [59]	train-rmse:0.000303	test-rmse:0.005865 
#> [60]	train-rmse:0.000303	test-rmse:0.005865 
#> [61]	train-rmse:0.000303	test-rmse:0.005865 
#> [62]	train-rmse:0.000303	test-rmse:0.005865 
#> [63]	train-rmse:0.000303	test-rmse:0.005865 
#> [64]	train-rmse:0.000303	test-rmse:0.005865 
#> [65]	train-rmse:0.000303	test-rmse:0.005865 
#> [66]	train-rmse:0.000303	test-rmse:0.005865 
#> [67]	train-rmse:0.000303	test-rmse:0.005865 
#> [68]	train-rmse:0.000303	test-rmse:0.005865 
#> [69]	train-rmse:0.000303	test-rmse:0.005865 
#> [70]	train-rmse:0.000303	test-rmse:0.005865 
#> [1]	train-rmse:9.375610	validation-rmse:9.386035 
#> [2]	train-rmse:6.653688	validation-rmse:6.973941 
#> [3]	train-rmse:4.722735	validation-rmse:5.326155 
#> [4]	train-rmse:3.353117	validation-rmse:4.237620 
#> [5]	train-rmse:2.381159	validation-rmse:3.533406 
#> [6]	train-rmse:1.691877	validation-rmse:3.105013 
#> [7]	train-rmse:1.203320	validation-rmse:2.844492 
#> [8]	train-rmse:0.855098	validation-rmse:2.690126 
#> [9]	train-rmse:0.608626	validation-rmse:2.598687 
#> [10]	train-rmse:0.432853	validation-rmse:2.520644 
#> [11]	train-rmse:0.308131	validation-rmse:2.471052 
#> [12]	train-rmse:0.219510	validation-rmse:2.438977 
#> [13]	train-rmse:0.156590	validation-rmse:2.418397 
#> [14]	train-rmse:0.111618	validation-rmse:2.404120 
#> [15]	train-rmse:0.079494	validation-rmse:2.394442 
#> [16]	train-rmse:0.056700	validation-rmse:2.387804 
#> [17]	train-rmse:0.040565	validation-rmse:2.383209 
#> [18]	train-rmse:0.029106	validation-rmse:2.380012 
#> [19]	train-rmse:0.020930	validation-rmse:2.377874 
#> [20]	train-rmse:0.015203	validation-rmse:2.376274 
#> [21]	train-rmse:0.011182	validation-rmse:2.375147 
#> [22]	train-rmse:0.008241	validation-rmse:2.374351 
#> [23]	train-rmse:0.006183	validation-rmse:2.373789 
#> [24]	train-rmse:0.004717	validation-rmse:2.373401 
#> [25]	train-rmse:0.003640	validation-rmse:2.373117 
#> [26]	train-rmse:0.002958	validation-rmse:2.372916 
#> [27]	train-rmse:0.002383	validation-rmse:2.372777 
#> [28]	train-rmse:0.001956	validation-rmse:2.372678 
#> [29]	train-rmse:0.001595	validation-rmse:2.372636 
#> [30]	train-rmse:0.001364	validation-rmse:2.372607 
#> [31]	train-rmse:0.001132	validation-rmse:2.372585 
#> [32]	train-rmse:0.000954	validation-rmse:2.372561 
#> [33]	train-rmse:0.000783	validation-rmse:2.372559 
#> [34]	train-rmse:0.000678	validation-rmse:2.372551 
#> [35]	train-rmse:0.000566	validation-rmse:2.372535 
#> [36]	train-rmse:0.000476	validation-rmse:2.372521 
#> [37]	train-rmse:0.000417	validation-rmse:2.372518 
#> [38]	train-rmse:0.000374	validation-rmse:2.372515 
#> [39]	train-rmse:0.000332	validation-rmse:2.372508 
#> [40]	train-rmse:0.000303	validation-rmse:2.372506 
#> [41]	train-rmse:0.000303	validation-rmse:2.372506 
#> [42]	train-rmse:0.000303	validation-rmse:2.372506 
#> [43]	train-rmse:0.000303	validation-rmse:2.372505 
#> [44]	train-rmse:0.000303	validation-rmse:2.372505 
#> [45]	train-rmse:0.000303	validation-rmse:2.372505 
#> [46]	train-rmse:0.000303	validation-rmse:2.372505 
#> [47]	train-rmse:0.000303	validation-rmse:2.372505 
#> [48]	train-rmse:0.000303	validation-rmse:2.372505 
#> [49]	train-rmse:0.000303	validation-rmse:2.372505 
#> [50]	train-rmse:0.000303	validation-rmse:2.372505 
#> [51]	train-rmse:0.000303	validation-rmse:2.372505 
#> [52]	train-rmse:0.000303	validation-rmse:2.372505 
#> [53]	train-rmse:0.000303	validation-rmse:2.372505 
#> [54]	train-rmse:0.000303	validation-rmse:2.372505 
#> [55]	train-rmse:0.000303	validation-rmse:2.372505 
#> [56]	train-rmse:0.000303	validation-rmse:2.372505 
#> [57]	train-rmse:0.000303	validation-rmse:2.372505 
#> [58]	train-rmse:0.000303	validation-rmse:2.372505 
#> [59]	train-rmse:0.000303	validation-rmse:2.372505 
#> [60]	train-rmse:0.000303	validation-rmse:2.372505 
#> [61]	train-rmse:0.000303	validation-rmse:2.372505 
#> [62]	train-rmse:0.000303	validation-rmse:2.372505 
#> [63]	train-rmse:0.000303	validation-rmse:2.372505 
#> [64]	train-rmse:0.000303	validation-rmse:2.372505 
#> [65]	train-rmse:0.000303	validation-rmse:2.372505 
#> [66]	train-rmse:0.000303	validation-rmse:2.372505 
#> [67]	train-rmse:0.000303	validation-rmse:2.372505 
#> [68]	train-rmse:0.000303	validation-rmse:2.372505 
#> [69]	train-rmse:0.000303	validation-rmse:2.372505 
#> [70]	train-rmse:0.000303	validation-rmse:2.372505 
#> [1] 
#> [1] "Resampling number 2 of 2,"
#> [1] 
#> Number of parameters (weights and biases) to estimate: 32 
#> Nguyen-Widrow method
#> Scaling factor= 0.7016138 
#> gamma= 29.78 	 alpha= 5.2414 	 beta= 30325.43 
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> [1]	train-rmse:8.738645	test-rmse:8.962268 
#> [2]	train-rmse:6.195705	test-rmse:6.524185 
#> [3]	train-rmse:4.421688	test-rmse:4.873809 
#> [4]	train-rmse:3.185898	test-rmse:3.788204 
#> [5]	train-rmse:2.333125	test-rmse:3.092832 
#> [6]	train-rmse:1.750869	test-rmse:2.662340 
#> [7]	train-rmse:1.362937	test-rmse:2.405770 
#> [8]	train-rmse:1.101573	test-rmse:2.270325 
#> [9]	train-rmse:0.938830	test-rmse:2.187224 
#> [10]	train-rmse:0.833056	test-rmse:2.134264 
#> [11]	train-rmse:0.768550	test-rmse:2.121936 
#> [12]	train-rmse:0.688411	test-rmse:2.083666 
#> [13]	train-rmse:0.615916	test-rmse:2.059367 
#> [14]	train-rmse:0.560035	test-rmse:2.022763 
#> [15]	train-rmse:0.527946	test-rmse:2.012295 
#> [16]	train-rmse:0.502968	test-rmse:2.003058 
#> [17]	train-rmse:0.477129	test-rmse:1.991057 
#> [18]	train-rmse:0.462241	test-rmse:1.986013 
#> [19]	train-rmse:0.448583	test-rmse:1.975098 
#> [20]	train-rmse:0.432517	test-rmse:1.970181 
#> [21]	train-rmse:0.420589	test-rmse:1.971169 
#> [22]	train-rmse:0.398948	test-rmse:1.967970 
#> [23]	train-rmse:0.383930	test-rmse:1.961504 
#> [24]	train-rmse:0.358391	test-rmse:1.952510 
#> [25]	train-rmse:0.340437	test-rmse:1.952712 
#> [26]	train-rmse:0.313560	test-rmse:1.944668 
#> [27]	train-rmse:0.301421	test-rmse:1.939796 
#> [28]	train-rmse:0.285848	test-rmse:1.940392 
#> [29]	train-rmse:0.275196	test-rmse:1.938587 
#> [30]	train-rmse:0.263511	test-rmse:1.936211 
#> [31]	train-rmse:0.250043	test-rmse:1.941464 
#> [32]	train-rmse:0.246654	test-rmse:1.940526 
#> [33]	train-rmse:0.233410	test-rmse:1.938957 
#> [34]	train-rmse:0.218645	test-rmse:1.937084 
#> [35]	train-rmse:0.213320	test-rmse:1.936118 
#> [36]	train-rmse:0.203508	test-rmse:1.937240 
#> [37]	train-rmse:0.193397	test-rmse:1.935680 
#> [38]	train-rmse:0.191504	test-rmse:1.935455 
#> [39]	train-rmse:0.182430	test-rmse:1.935315 
#> [40]	train-rmse:0.173820	test-rmse:1.933961 
#> [41]	train-rmse:0.171633	test-rmse:1.932754 
#> [42]	train-rmse:0.163372	test-rmse:1.931440 
#> [43]	train-rmse:0.156264	test-rmse:1.931131 
#> [44]	train-rmse:0.152842	test-rmse:1.930663 
#> [45]	train-rmse:0.150778	test-rmse:1.930794 
#> [46]	train-rmse:0.143058	test-rmse:1.928578 
#> [47]	train-rmse:0.141701	test-rmse:1.928022 
#> [48]	train-rmse:0.139211	test-rmse:1.928146 
#> [49]	train-rmse:0.137050	test-rmse:1.928076 
#> [50]	train-rmse:0.134470	test-rmse:1.928308 
#> [51]	train-rmse:0.130320	test-rmse:1.928519 
#> [52]	train-rmse:0.128167	test-rmse:1.928436 
#> [53]	train-rmse:0.122503	test-rmse:1.927355 
#> [54]	train-rmse:0.118706	test-rmse:1.927838 
#> [55]	train-rmse:0.114547	test-rmse:1.927789 
#> [56]	train-rmse:0.111248	test-rmse:1.927791 
#> [57]	train-rmse:0.107185	test-rmse:1.927727 
#> [58]	train-rmse:0.105089	test-rmse:1.927329 
#> [59]	train-rmse:0.103508	test-rmse:1.927256 
#> [60]	train-rmse:0.101067	test-rmse:1.927065 
#> [61]	train-rmse:0.095303	test-rmse:1.926186 
#> [62]	train-rmse:0.094680	test-rmse:1.926440 
#> [63]	train-rmse:0.091680	test-rmse:1.926369 
#> [64]	train-rmse:0.090478	test-rmse:1.926311 
#> [65]	train-rmse:0.089331	test-rmse:1.926060 
#> [66]	train-rmse:0.085803	test-rmse:1.925959 
#> [67]	train-rmse:0.083367	test-rmse:1.925365 
#> [68]	train-rmse:0.082439	test-rmse:1.925507 
#> [69]	train-rmse:0.080571	test-rmse:1.925459 
#> [70]	train-rmse:0.079213	test-rmse:1.925103 
#> [1]	train-rmse:8.738645	validation-rmse:9.680377 
#> [2]	train-rmse:6.195705	validation-rmse:7.042422 
#> [3]	train-rmse:4.421688	validation-rmse:5.254424 
#> [4]	train-rmse:3.185898	validation-rmse:4.080691 
#> [5]	train-rmse:2.333125	validation-rmse:3.336612 
#> [6]	train-rmse:1.750869	validation-rmse:2.874493 
#> [7]	train-rmse:1.362937	validation-rmse:2.586548 
#> [8]	train-rmse:1.101573	validation-rmse:2.436525 
#> [9]	train-rmse:0.938830	validation-rmse:2.354399 
#> [10]	train-rmse:0.833056	validation-rmse:2.298675 
#> [11]	train-rmse:0.768550	validation-rmse:2.286424 
#> [12]	train-rmse:0.688411	validation-rmse:2.268520 
#> [13]	train-rmse:0.615916	validation-rmse:2.252877 
#> [14]	train-rmse:0.560035	validation-rmse:2.216191 
#> [15]	train-rmse:0.527946	validation-rmse:2.206151 
#> [16]	train-rmse:0.502968	validation-rmse:2.195800 
#> [17]	train-rmse:0.477129	validation-rmse:2.191773 
#> [18]	train-rmse:0.462241	validation-rmse:2.192262 
#> [19]	train-rmse:0.448583	validation-rmse:2.179632 
#> [20]	train-rmse:0.432517	validation-rmse:2.179272 
#> [21]	train-rmse:0.420589	validation-rmse:2.174785 
#> [22]	train-rmse:0.398948	validation-rmse:2.171080 
#> [23]	train-rmse:0.383930	validation-rmse:2.167774 
#> [24]	train-rmse:0.358391	validation-rmse:2.162725 
#> [25]	train-rmse:0.340437	validation-rmse:2.161737 
#> [26]	train-rmse:0.313560	validation-rmse:2.158335 
#> [27]	train-rmse:0.301421	validation-rmse:2.156139 
#> [28]	train-rmse:0.285848	validation-rmse:2.153127 
#> [29]	train-rmse:0.275196	validation-rmse:2.152529 
#> [30]	train-rmse:0.263511	validation-rmse:2.151058 
#> [31]	train-rmse:0.250043	validation-rmse:2.149360 
#> [32]	train-rmse:0.246654	validation-rmse:2.149311 
#> [33]	train-rmse:0.233410	validation-rmse:2.145274 
#> [34]	train-rmse:0.218645	validation-rmse:2.144474 
#> [35]	train-rmse:0.213320	validation-rmse:2.142999 
#> [36]	train-rmse:0.203508	validation-rmse:2.142066 
#> [37]	train-rmse:0.193397	validation-rmse:2.139504 
#> [38]	train-rmse:0.191504	validation-rmse:2.138882 
#> [39]	train-rmse:0.182430	validation-rmse:2.138346 
#> [40]	train-rmse:0.173820	validation-rmse:2.139200 
#> [41]	train-rmse:0.171633	validation-rmse:2.139579 
#> [42]	train-rmse:0.163372	validation-rmse:2.137309 
#> [43]	train-rmse:0.156264	validation-rmse:2.137722 
#> [44]	train-rmse:0.152842	validation-rmse:2.139232 
#> [45]	train-rmse:0.150778	validation-rmse:2.139153 
#> [46]	train-rmse:0.143058	validation-rmse:2.136790 
#> [47]	train-rmse:0.141701	validation-rmse:2.137437 
#> [48]	train-rmse:0.139211	validation-rmse:2.137653 
#> [49]	train-rmse:0.137050	validation-rmse:2.137825 
#> [50]	train-rmse:0.134470	validation-rmse:2.138196 
#> [51]	train-rmse:0.130320	validation-rmse:2.136406 
#> [52]	train-rmse:0.128167	validation-rmse:2.136163 
#> [53]	train-rmse:0.122503	validation-rmse:2.135585 
#> [54]	train-rmse:0.118706	validation-rmse:2.135614 
#> [55]	train-rmse:0.114547	validation-rmse:2.135365 
#> [56]	train-rmse:0.111248	validation-rmse:2.134916 
#> [57]	train-rmse:0.107185	validation-rmse:2.137532 
#> [58]	train-rmse:0.105089	validation-rmse:2.136873 
#> [59]	train-rmse:0.103508	validation-rmse:2.136859 
#> [60]	train-rmse:0.101067	validation-rmse:2.136491 
#> [61]	train-rmse:0.095303	validation-rmse:2.135405 
#> [62]	train-rmse:0.094680	validation-rmse:2.136036 
#> [63]	train-rmse:0.091680	validation-rmse:2.134145 
#> [64]	train-rmse:0.090478	validation-rmse:2.134049 
#> [65]	train-rmse:0.089331	validation-rmse:2.133773 
#> [66]	train-rmse:0.085803	validation-rmse:2.133446 
#> [67]	train-rmse:0.083367	validation-rmse:2.133034 
#> [68]	train-rmse:0.082439	validation-rmse:2.132943 
#> [69]	train-rmse:0.080571	validation-rmse:2.133147 
#> [70]	train-rmse:0.079213	validation-rmse:2.132921 
#> [1] 
#> [1] "Working on the Ensembles section"
#> [1] 
#> Number of parameters (weights and biases) to estimate: 54 
#> Nguyen-Widrow method
#> Scaling factor= 0.7039559 
#> gamma= 20.3912 	 alpha= 5.2031 	 beta= 7020.167 
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> [1]	train-rmse:9.376087	test-rmse:8.779320 
#> [2]	train-rmse:6.645868	test-rmse:6.233693 
#> [3]	train-rmse:4.712291	test-rmse:4.425151 
#> [4]	train-rmse:3.342694	test-rmse:3.131631 
#> [5]	train-rmse:2.371268	test-rmse:2.223300 
#> [6]	train-rmse:1.682128	test-rmse:1.581149 
#> [7]	train-rmse:1.194637	test-rmse:1.119443 
#> [8]	train-rmse:0.849098	test-rmse:0.797855 
#> [9]	train-rmse:0.602735	test-rmse:0.566688 
#> [10]	train-rmse:0.429063	test-rmse:0.405164 
#> [11]	train-rmse:0.304680	test-rmse:0.288181 
#> [12]	train-rmse:0.216446	test-rmse:0.205199 
#> [13]	train-rmse:0.153860	test-rmse:0.146353 
#> [14]	train-rmse:0.109438	test-rmse:0.104212 
#> [15]	train-rmse:0.077890	test-rmse:0.074567 
#> [16]	train-rmse:0.055521	test-rmse:0.053221 
#> [17]	train-rmse:0.039502	test-rmse:0.037881 
#> [18]	train-rmse:0.028132	test-rmse:0.026969 
#> [19]	train-rmse:0.020065	test-rmse:0.019236 
#> [20]	train-rmse:0.014329	test-rmse:0.013702 
#> [21]	train-rmse:0.010223	test-rmse:0.009792 
#> [22]	train-rmse:0.007343	test-rmse:0.007044 
#> [23]	train-rmse:0.005269	test-rmse:0.005128 
#> [24]	train-rmse:0.003800	test-rmse:0.003820 
#> [25]	train-rmse:0.002757	test-rmse:0.002758 
#> [26]	train-rmse:0.002007	test-rmse:0.002014 
#> [27]	train-rmse:0.001470	test-rmse:0.001494 
#> [28]	train-rmse:0.001101	test-rmse:0.001162 
#> [29]	train-rmse:0.000843	test-rmse:0.000919 
#> [30]	train-rmse:0.000631	test-rmse:0.000778 
#> [31]	train-rmse:0.000483	test-rmse:0.000652 
#> [32]	train-rmse:0.000384	test-rmse:0.000560 
#> [33]	train-rmse:0.000318	test-rmse:0.000514 
#> [34]	train-rmse:0.000282	test-rmse:0.000490 
#> [35]	train-rmse:0.000265	test-rmse:0.000482 
#> [36]	train-rmse:0.000262	test-rmse:0.000482 
#> [37]	train-rmse:0.000261	test-rmse:0.000482 
#> [38]	train-rmse:0.000260	test-rmse:0.000483 
#> [39]	train-rmse:0.000260	test-rmse:0.000484 
#> [40]	train-rmse:0.000260	test-rmse:0.000484 
#> [41]	train-rmse:0.000260	test-rmse:0.000484 
#> [42]	train-rmse:0.000259	test-rmse:0.000485 
#> [43]	train-rmse:0.000259	test-rmse:0.000485 
#> [44]	train-rmse:0.000259	test-rmse:0.000485 
#> [45]	train-rmse:0.000260	test-rmse:0.000485 
#> [46]	train-rmse:0.000260	test-rmse:0.000485 
#> [47]	train-rmse:0.000260	test-rmse:0.000485 
#> [48]	train-rmse:0.000260	test-rmse:0.000485 
#> [49]	train-rmse:0.000260	test-rmse:0.000485 
#> [50]	train-rmse:0.000260	test-rmse:0.000485 
#> [51]	train-rmse:0.000260	test-rmse:0.000485 
#> [52]	train-rmse:0.000260	test-rmse:0.000485 
#> [53]	train-rmse:0.000260	test-rmse:0.000485 
#> [54]	train-rmse:0.000260	test-rmse:0.000485 
#> [55]	train-rmse:0.000260	test-rmse:0.000485 
#> [56]	train-rmse:0.000260	test-rmse:0.000485 
#> [57]	train-rmse:0.000260	test-rmse:0.000485 
#> [58]	train-rmse:0.000260	test-rmse:0.000485 
#> [59]	train-rmse:0.000260	test-rmse:0.000485 
#> [60]	train-rmse:0.000260	test-rmse:0.000485 
#> [61]	train-rmse:0.000260	test-rmse:0.000485 
#> [62]	train-rmse:0.000260	test-rmse:0.000485 
#> [63]	train-rmse:0.000260	test-rmse:0.000485 
#> [64]	train-rmse:0.000260	test-rmse:0.000485 
#> [65]	train-rmse:0.000260	test-rmse:0.000485 
#> [66]	train-rmse:0.000260	test-rmse:0.000485 
#> [67]	train-rmse:0.000260	test-rmse:0.000485 
#> [68]	train-rmse:0.000260	test-rmse:0.000485 
#> [69]	train-rmse:0.000260	test-rmse:0.000486 
#> [70]	train-rmse:0.000260	test-rmse:0.000486 
#> [1]	train-rmse:9.376087	validation-rmse:9.046247 
#> [2]	train-rmse:6.645868	validation-rmse:6.405956 
#> [3]	train-rmse:4.712291	validation-rmse:4.548027 
#> [4]	train-rmse:3.342694	validation-rmse:3.232020 
#> [5]	train-rmse:2.371268	validation-rmse:2.295969 
#> [6]	train-rmse:1.682128	validation-rmse:1.626775 
#> [7]	train-rmse:1.194637	validation-rmse:1.157064 
#> [8]	train-rmse:0.849098	validation-rmse:0.820941 
#> [9]	train-rmse:0.602735	validation-rmse:0.583282 
#> [10]	train-rmse:0.429063	validation-rmse:0.415399 
#> [11]	train-rmse:0.304680	validation-rmse:0.295251 
#> [12]	train-rmse:0.216446	validation-rmse:0.209928 
#> [13]	train-rmse:0.153860	validation-rmse:0.149331 
#> [14]	train-rmse:0.109438	validation-rmse:0.106326 
#> [15]	train-rmse:0.077890	validation-rmse:0.075690 
#> [16]	train-rmse:0.055521	validation-rmse:0.053526 
#> [17]	train-rmse:0.039502	validation-rmse:0.038102 
#> [18]	train-rmse:0.028132	validation-rmse:0.027148 
#> [19]	train-rmse:0.020065	validation-rmse:0.019344 
#> [20]	train-rmse:0.014329	validation-rmse:0.013814 
#> [21]	train-rmse:0.010223	validation-rmse:0.009853 
#> [22]	train-rmse:0.007343	validation-rmse:0.007001 
#> [23]	train-rmse:0.005269	validation-rmse:0.005008 
#> [24]	train-rmse:0.003800	validation-rmse:0.003628 
#> [25]	train-rmse:0.002757	validation-rmse:0.002645 
#> [26]	train-rmse:0.002007	validation-rmse:0.001954 
#> [27]	train-rmse:0.001470	validation-rmse:0.001457 
#> [28]	train-rmse:0.001101	validation-rmse:0.001114 
#> [29]	train-rmse:0.000843	validation-rmse:0.000897 
#> [30]	train-rmse:0.000631	validation-rmse:0.000727 
#> [31]	train-rmse:0.000483	validation-rmse:0.000597 
#> [32]	train-rmse:0.000384	validation-rmse:0.000516 
#> [33]	train-rmse:0.000318	validation-rmse:0.000468 
#> [34]	train-rmse:0.000282	validation-rmse:0.000451 
#> [35]	train-rmse:0.000265	validation-rmse:0.000440 
#> [36]	train-rmse:0.000262	validation-rmse:0.000441 
#> [37]	train-rmse:0.000261	validation-rmse:0.000442 
#> [38]	train-rmse:0.000260	validation-rmse:0.000442 
#> [39]	train-rmse:0.000260	validation-rmse:0.000443 
#> [40]	train-rmse:0.000260	validation-rmse:0.000444 
#> [41]	train-rmse:0.000260	validation-rmse:0.000444 
#> [42]	train-rmse:0.000259	validation-rmse:0.000444 
#> [43]	train-rmse:0.000259	validation-rmse:0.000444 
#> [44]	train-rmse:0.000259	validation-rmse:0.000444 
#> [45]	train-rmse:0.000260	validation-rmse:0.000445 
#> [46]	train-rmse:0.000260	validation-rmse:0.000445 
#> [47]	train-rmse:0.000260	validation-rmse:0.000445 
#> [48]	train-rmse:0.000260	validation-rmse:0.000445 
#> [49]	train-rmse:0.000260	validation-rmse:0.000445 
#> [50]	train-rmse:0.000260	validation-rmse:0.000445 
#> [51]	train-rmse:0.000260	validation-rmse:0.000445 
#> [52]	train-rmse:0.000260	validation-rmse:0.000445 
#> [53]	train-rmse:0.000260	validation-rmse:0.000445 
#> [54]	train-rmse:0.000260	validation-rmse:0.000445 
#> [55]	train-rmse:0.000260	validation-rmse:0.000445 
#> [56]	train-rmse:0.000260	validation-rmse:0.000445 
#> [57]	train-rmse:0.000260	validation-rmse:0.000445 
#> [58]	train-rmse:0.000260	validation-rmse:0.000445 
#> [59]	train-rmse:0.000260	validation-rmse:0.000445 
#> [60]	train-rmse:0.000260	validation-rmse:0.000445 
#> [61]	train-rmse:0.000260	validation-rmse:0.000445 
#> [62]	train-rmse:0.000260	validation-rmse:0.000445 
#> [63]	train-rmse:0.000260	validation-rmse:0.000445 
#> [64]	train-rmse:0.000260	validation-rmse:0.000445 
#> [65]	train-rmse:0.000260	validation-rmse:0.000445 
#> [66]	train-rmse:0.000260	validation-rmse:0.000445 
#> [67]	train-rmse:0.000260	validation-rmse:0.000445 
#> [68]	train-rmse:0.000260	validation-rmse:0.000445 
#> [69]	train-rmse:0.000260	validation-rmse:0.000445 
#> [70]	train-rmse:0.000260	validation-rmse:0.000445 





#> [1] 
#> [1] "0.05 and 0.95 outliers for crim, column number 1"
#> [1] "IQR = 3.61003, 0.05 = 0.02985 0.95 = 15.8603"
#>        crim zn indus chas   nox    rm   age    dis tax ptratio  black lstat
#> 418 25.9406  0  18.1    0 0.679 5.304  89.1 1.6475 666    20.2 127.36 26.64
#> 415 45.7461  0  18.1    0 0.693 4.519 100.0 1.6582 666    20.2  88.27 36.98
#> 441 22.0511  0  18.1    0 0.740 5.818  92.4 1.8662 666    20.2 391.45 22.11
#> 381 88.9762  0  18.1    0 0.671 6.968  91.9 1.4165 666    20.2 396.90 17.21
#> 388 22.5971  0  18.1    0 0.700 5.000  89.5 1.5184 666    20.2 396.90 31.99
#> 419 73.5341  0  18.1    0 0.679 5.957 100.0 1.8026 666    20.2  16.45 20.62
#> 401 25.0461  0  18.1    0 0.693 5.987 100.0 1.5888 666    20.2 396.90 26.77
#> 404 24.8017  0  18.1    0 0.693 5.349  96.0 1.7028 666    20.2 396.90 19.77
#> 411 51.1358  0  18.1    0 0.597 5.757 100.0 1.4130 666    20.2   2.60 10.11
#> 414 28.6558  0  18.1    0 0.597 5.155 100.0 1.5894 666    20.2 210.97 20.08
#> 405 41.5292  0  18.1    0 0.693 5.531  85.4 1.6074 666    20.2 329.46 27.38
#> 399 38.3518  0  18.1    0 0.693 5.453 100.0 1.4896 666    20.2 396.90 30.59
#> 428 37.6619  0  18.1    0 0.679 6.202  78.7 1.8629 666    20.2  18.82 14.52
#> 406 67.9208  0  18.1    0 0.693 5.683 100.0 1.4254 666    20.2 384.97 22.98
#> 379 23.6482  0  18.1    0 0.671 6.380  96.2 1.3861 666    20.2 396.90 23.69
#> 387 24.3938  0  18.1    0 0.700 4.652 100.0 1.4672 666    20.2 396.90 28.28
#>     medv  y
#> 418 10.4 24
#> 415  7.0 24
#> 441 10.5 24
#> 381 10.4 24
#> 388  7.4 24
#> 419  8.8 24
#> 401  5.6 24
#> 404  8.3 24
#> 411 15.0 24
#> 414 16.3 24
#> 405  8.5 24
#> 399  5.0 24
#> 428 10.9 24
#> 406  5.0 24
#> 379 13.1 24
#> 387 10.5 24
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for zn, column number 2"
#> [1] "IQR = 12.5, 0.05 = 0 0.95 = 80"
#>       crim  zn indus chas   nox    rm  age    dis tax ptratio black lstat medv
#> 58 0.01432 100  1.32    0 0.411 6.816 40.5 8.3248 256    15.1 392.9  3.95 31.6
#>    y
#> 58 5
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for indus, column number 3"
#> [1] "IQR = 12.91, 0.05 = 2.18 0.95 = 21.89"
#>  [1] crim    zn      indus   chas    nox     rm      age     dis     tax    
#> [10] ptratio black   lstat   medv    y      
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for chas, column number 4"
#> [1] "IQR = 0, 0.05 = 0 0.95 = 1"
#>  [1] crim    zn      indus   chas    nox     rm      age     dis     tax    
#> [10] ptratio black   lstat   medv    y      
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for nox, column number 5"
#> [1] "IQR = 0.175, 0.05 = 0.409 0.95 = 0.74"
#>  [1] crim    zn      indus   chas    nox     rm      age     dis     tax    
#> [10] ptratio black   lstat   medv    y      
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for rm, column number 6"
#> [1] "IQR = 0.734, 0.05 = 5.304 0.95 = 7.61"
#>         crim zn indus chas   nox    rm   age    dis tax ptratio  black lstat
#> 366  4.55587  0  18.1    0 0.718 3.561  87.9 1.6132 666    20.2 354.70  7.12
#> 407 20.71620  0  18.1    0 0.659 4.138 100.0 1.1781 666    20.2 370.22 23.34
#> 365  3.47428  0  18.1    1 0.718 8.780  82.9 1.9047 666    20.2 354.55  5.29
#> 375 18.49820  0  18.1    0 0.668 4.138 100.0 1.1370 666    20.2 396.90 37.97
#> 226  0.52693  0   6.2    0 0.504 8.725  83.0 2.8944 307    17.4 382.00  4.63
#> 368 13.52220  0  18.1    0 0.631 3.863 100.0 1.5106 666    20.2 131.42 13.33
#>     medv  y
#> 366 27.5 24
#> 407 11.9 24
#> 365 21.9 24
#> 375 13.8 24
#> 226 50.0  8
#> 368 23.1 24
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for age, column number 7"
#> [1] "IQR = 49.7, 0.05 = 17.7 0.95 = 100"
#>  [1] crim    zn      indus   chas    nox     rm      age     dis     tax    
#> [10] ptratio black   lstat   medv    y      
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for dis, column number 8"
#> [1] "IQR = 3.0298, 0.05 = 1.4608 0.95 = 7.8278"
#>  [1] crim    zn      indus   chas    nox     rm      age     dis     tax    
#> [10] ptratio black   lstat   medv    y      
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for tax, column number 9"
#> [1] "IQR = 385, 0.05 = 222 0.95 = 666"
#>  [1] crim    zn      indus   chas    nox     rm      age     dis     tax    
#> [10] ptratio black   lstat   medv    y      
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for ptratio, column number 10"
#> [1] "IQR = 2.8, 0.05 = 14.7 0.95 = 21"
#>  [1] crim    zn      indus   chas    nox     rm      age     dis     tax    
#> [10] ptratio black   lstat   medv    y      
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for black, column number 11"
#> [1] "IQR = 21, 0.05 = 83.45 0.95 = 396.9"
#>         crim zn indus chas   nox    rm   age    dis tax ptratio black lstat
#> 412 14.05070  0  18.1    0 0.597 6.657 100.0 1.5275 666    20.2 35.05 21.22
#> 420 11.81230  0  18.1    0 0.718 6.824  76.5 1.7940 666    20.2 48.45 22.74
#> 457  4.66883  0  18.1    0 0.713 5.976  87.9 2.5806 666    20.2 10.48 19.01
#> 451  6.71772  0  18.1    0 0.713 6.749  92.6 2.3236 666    20.2  0.32 17.44
#> 417 10.83420  0  18.1    0 0.679 6.782  90.8 1.8195 666    20.2 21.57 25.79
#> 437 14.42080  0  18.1    0 0.740 6.461  93.3 2.0026 666    20.2 27.49 18.05
#> 467  3.77498  0  18.1    0 0.655 5.952  84.7 2.8715 666    20.2 22.01 17.15
#> 427 12.24720  0  18.1    0 0.584 5.837  59.7 1.9976 666    20.2 24.65 15.69
#> 446 10.67180  0  18.1    0 0.740 6.459  94.8 1.9879 666    20.2 43.06 23.98
#> 426 15.86030  0  18.1    0 0.679 5.896  95.4 1.9096 666    20.2  7.68 24.39
#> 419 73.53410  0  18.1    0 0.679 5.957 100.0 1.8026 666    20.2 16.45 20.62
#> 413 18.81100  0  18.1    0 0.597 4.628 100.0 1.5539 666    20.2 28.79 34.37
#> 424  7.05042  0  18.1    0 0.614 6.103  85.1 2.0218 666    20.2  2.52 23.29
#> 458  8.20058  0  18.1    0 0.713 5.936  80.3 2.7792 666    20.2  3.50 16.94
#> 438 15.17720  0  18.1    0 0.740 6.152 100.0 1.9142 666    20.2  9.32 26.45
#> 411 51.13580  0  18.1    0 0.597 5.757 100.0 1.4130 666    20.2  2.60 10.11
#> 456  4.75237  0  18.1    0 0.713 6.525  86.5 2.4358 666    20.2 50.92 18.13
#> 428 37.66190  0  18.1    0 0.679 6.202  78.7 1.8629 666    20.2 18.82 14.52
#> 455  9.51363  0  18.1    0 0.713 6.728  94.1 2.4961 666    20.2  6.68 18.71
#> 425  8.79212  0  18.1    0 0.584 5.565  70.6 2.0635 666    20.2  3.65 17.16
#> 416 18.08460  0  18.1    0 0.679 6.434 100.0 1.8347 666    20.2 27.25 29.05
#>     medv  y
#> 412 17.2 24
#> 420  8.4 24
#> 457 12.7 24
#> 451 13.4 24
#> 417  7.5 24
#> 437  9.6 24
#> 467 19.0 24
#> 427 10.2 24
#> 446 11.8 24
#> 426  8.3 24
#> 419  8.8 24
#> 413 17.9 24
#> 424 13.4 24
#> 458 13.5 24
#> 438  8.7 24
#> 411 15.0 24
#> 456 14.1 24
#> 428 10.9 24
#> 455 14.9 24
#> 425 11.7 24
#> 416  7.2 24
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for lstat, column number 12"
#> [1] "IQR = 9.95, 0.05 = 3.73 0.95 = 26.82"
#>  [1] crim    zn      indus   chas    nox     rm      age     dis     tax    
#> [10] ptratio black   lstat   medv    y      
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for medv, column number 13"
#> [1] "IQR = 8.2, 0.05 = 10.2 0.95 = 43.5"
#>  [1] crim    zn      indus   chas    nox     rm      age     dis     tax    
#> [10] ptratio black   lstat   medv    y      
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for y, column number 14"
#> [1] "IQR = 20, 0.05 = 2 0.95 = 24"
#>  [1] crim    zn      indus   chas    nox     rm      age     dis     tax    
#> [10] ptratio black   lstat   medv    y      
#> <0 rows> (or 0-length row.names)
#> [1] 
#> $head_of_data
#> 
#> $accuracy_plot

#> 
#> $overfitting_plot
#> Warning: Removed 2 rows containing missing values or values outside the scale range
#> (`geom_line()`).
#> Warning: Removed 2 rows containing missing values or values outside the scale range
#> (`geom_point()`).
#> Warning: Removed 2 rows containing missing values or values outside the scale range
#> (`geom_hline()`).

#> 
#> $histograms

#> 
#> $boxplots

#> 
#> $predictor_vs_target

#> 
#> $final_results_table
#> 
#> $data_correlation
#> 
#> $data_summary
#> 
#> $head_of_ensemble
#> 
#> $ensemble_correlation
#> 
#> $accuracy_barchart

#> 
#> $train_vs_holdout

#> 
#> $duration_barchart

#> 
#> $overfitting_barchart
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_col()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_text()`).

#> 
#> $bias_barchart

#> 
#> $MSE_barchart

#> 
#> $MAE_barchart

#> 
#> $SSE_barchart

#> 
#> $bias_plot

#> 
#> $MSE_plot

#> 
#> $MAE_plot

#> 
#> $SSE_plot

#> 
#> $colnum
#> [1] 9
#> 
#> $numresamples
#> [1] 2
#> 
#> $save_all_trained_modesl
#> [1] "N"
#> 
#> $remove_ensemble_correlations_greater_than
#> [1] 1
#> 
#> $train_amount
#> [1] 0.6
#> 
#> $test_amount
#> [1] 0.2
#> 
#> $validation_amount
#> [1] 0.2
#> 

 Numeric(data = Concrete,
  colnum = 9,
  numresamples = 2,
  how_to_handle_strings = 1,
  do_you_have_new_data = "N",
  save_all_trained_models = "N",
  remove_ensemble_correlations_greater_than = 1.00,
  train_amount = 0.60,
  test_amount = 0.20,
  validation_amount = 0.20
  )



#> [1] 
#> [1] "Resampling number 1 of 2,"
#> [1] 
#> Number of parameters (weights and biases) to estimate: 22 
#> Nguyen-Widrow method
#> Scaling factor= 0.700778 
#> gamma= 20.298 	 alpha= 0.8999 	 beta= 31823.19 
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> [1]	train-rmse:28.156014	test-rmse:29.357132 
#> [2]	train-rmse:20.793623	test-rmse:21.985201 
#> [3]	train-rmse:15.854875	test-rmse:16.988702 
#> [4]	train-rmse:12.491504	test-rmse:13.456017 
#> [5]	train-rmse:10.183531	test-rmse:11.162809 
#> [6]	train-rmse:8.700776	test-rmse:9.666788 
#> [7]	train-rmse:7.627652	test-rmse:8.735408 
#> [8]	train-rmse:6.988465	test-rmse:8.019862 
#> [9]	train-rmse:6.525406	test-rmse:7.495719 
#> [10]	train-rmse:6.160006	test-rmse:7.182125 
#> [11]	train-rmse:5.860499	test-rmse:6.768465 
#> [12]	train-rmse:5.670437	test-rmse:6.651993 
#> [13]	train-rmse:5.424882	test-rmse:6.486878 
#> [14]	train-rmse:5.176786	test-rmse:6.275520 
#> [15]	train-rmse:5.057829	test-rmse:6.184321 
#> [16]	train-rmse:4.937419	test-rmse:6.113025 
#> [17]	train-rmse:4.810499	test-rmse:6.066141 
#> [18]	train-rmse:4.742767	test-rmse:5.964951 
#> [19]	train-rmse:4.629604	test-rmse:5.919063 
#> [20]	train-rmse:4.580290	test-rmse:5.882150 
#> [21]	train-rmse:4.488725	test-rmse:5.794250 
#> [22]	train-rmse:4.403780	test-rmse:5.787696 
#> [23]	train-rmse:4.315082	test-rmse:5.683733 
#> [24]	train-rmse:4.218905	test-rmse:5.666932 
#> [25]	train-rmse:4.185655	test-rmse:5.628863 
#> [26]	train-rmse:4.134825	test-rmse:5.594383 
#> [27]	train-rmse:4.062384	test-rmse:5.553695 
#> [28]	train-rmse:4.000254	test-rmse:5.507128 
#> [29]	train-rmse:3.977797	test-rmse:5.468068 
#> [30]	train-rmse:3.930854	test-rmse:5.461368 
#> [31]	train-rmse:3.885543	test-rmse:5.424561 
#> [32]	train-rmse:3.816028	test-rmse:5.381706 
#> [33]	train-rmse:3.753209	test-rmse:5.387141 
#> [34]	train-rmse:3.736999	test-rmse:5.360133 
#> [35]	train-rmse:3.694668	test-rmse:5.336348 
#> [36]	train-rmse:3.667206	test-rmse:5.326707 
#> [37]	train-rmse:3.637384	test-rmse:5.288336 
#> [38]	train-rmse:3.609748	test-rmse:5.274210 
#> [39]	train-rmse:3.586273	test-rmse:5.233952 
#> [40]	train-rmse:3.533768	test-rmse:5.210992 
#> [41]	train-rmse:3.506336	test-rmse:5.212386 
#> [42]	train-rmse:3.489072	test-rmse:5.201091 
#> [43]	train-rmse:3.438863	test-rmse:5.173969 
#> [44]	train-rmse:3.406678	test-rmse:5.160806 
#> [45]	train-rmse:3.372448	test-rmse:5.159036 
#> [46]	train-rmse:3.358391	test-rmse:5.150706 
#> [47]	train-rmse:3.317797	test-rmse:5.114362 
#> [48]	train-rmse:3.312103	test-rmse:5.098961 
#> [49]	train-rmse:3.266421	test-rmse:5.076859 
#> [50]	train-rmse:3.234406	test-rmse:5.073200 
#> [51]	train-rmse:3.220228	test-rmse:5.065399 
#> [52]	train-rmse:3.209395	test-rmse:5.046887 
#> [53]	train-rmse:3.196762	test-rmse:5.022670 
#> [54]	train-rmse:3.171610	test-rmse:5.014254 
#> [55]	train-rmse:3.159932	test-rmse:5.007352 
#> [56]	train-rmse:3.118847	test-rmse:4.998491 
#> [57]	train-rmse:3.094442	test-rmse:4.971415 
#> [58]	train-rmse:3.069675	test-rmse:4.971465 
#> [59]	train-rmse:3.038636	test-rmse:4.922120 
#> [60]	train-rmse:3.012390	test-rmse:4.889162 
#> [61]	train-rmse:3.007638	test-rmse:4.885466 
#> [62]	train-rmse:2.986033	test-rmse:4.882548 
#> [63]	train-rmse:2.977695	test-rmse:4.876943 
#> [64]	train-rmse:2.958482	test-rmse:4.855552 
#> [65]	train-rmse:2.953726	test-rmse:4.853204 
#> [66]	train-rmse:2.948603	test-rmse:4.839701 
#> [67]	train-rmse:2.939267	test-rmse:4.832801 
#> [68]	train-rmse:2.925462	test-rmse:4.815781 
#> [69]	train-rmse:2.909066	test-rmse:4.815496 
#> [70]	train-rmse:2.896814	test-rmse:4.806214 
#> [1]	train-rmse:28.156014	validation-rmse:28.766506 
#> [2]	train-rmse:20.793623	validation-rmse:21.549708 
#> [3]	train-rmse:15.854875	validation-rmse:16.824925 
#> [4]	train-rmse:12.491504	validation-rmse:13.534748 
#> [5]	train-rmse:10.183531	validation-rmse:11.266754 
#> [6]	train-rmse:8.700776	validation-rmse:9.888971 
#> [7]	train-rmse:7.627652	validation-rmse:8.750028 
#> [8]	train-rmse:6.988465	validation-rmse:8.129846 
#> [9]	train-rmse:6.525406	validation-rmse:7.675947 
#> [10]	train-rmse:6.160006	validation-rmse:7.258871 
#> [11]	train-rmse:5.860499	validation-rmse:6.996944 
#> [12]	train-rmse:5.670437	validation-rmse:6.854641 
#> [13]	train-rmse:5.424882	validation-rmse:6.691655 
#> [14]	train-rmse:5.176786	validation-rmse:6.541539 
#> [15]	train-rmse:5.057829	validation-rmse:6.427097 
#> [16]	train-rmse:4.937419	validation-rmse:6.300546 
#> [17]	train-rmse:4.810499	validation-rmse:6.248984 
#> [18]	train-rmse:4.742767	validation-rmse:6.190668 
#> [19]	train-rmse:4.629604	validation-rmse:6.178513 
#> [20]	train-rmse:4.580290	validation-rmse:6.115877 
#> [21]	train-rmse:4.488725	validation-rmse:6.059504 
#> [22]	train-rmse:4.403780	validation-rmse:6.009024 
#> [23]	train-rmse:4.315082	validation-rmse:5.950120 
#> [24]	train-rmse:4.218905	validation-rmse:5.918681 
#> [25]	train-rmse:4.185655	validation-rmse:5.900909 
#> [26]	train-rmse:4.134825	validation-rmse:5.882598 
#> [27]	train-rmse:4.062384	validation-rmse:5.931404 
#> [28]	train-rmse:4.000254	validation-rmse:5.927863 
#> [29]	train-rmse:3.977797	validation-rmse:5.901262 
#> [30]	train-rmse:3.930854	validation-rmse:5.870582 
#> [31]	train-rmse:3.885543	validation-rmse:5.847163 
#> [32]	train-rmse:3.816028	validation-rmse:5.786169 
#> [33]	train-rmse:3.753209	validation-rmse:5.732523 
#> [34]	train-rmse:3.736999	validation-rmse:5.725346 
#> [35]	train-rmse:3.694668	validation-rmse:5.672990 
#> [36]	train-rmse:3.667206	validation-rmse:5.661063 
#> [37]	train-rmse:3.637384	validation-rmse:5.613938 
#> [38]	train-rmse:3.609748	validation-rmse:5.573009 
#> [39]	train-rmse:3.586273	validation-rmse:5.562829 
#> [40]	train-rmse:3.533768	validation-rmse:5.522973 
#> [41]	train-rmse:3.506336	validation-rmse:5.540372 
#> [42]	train-rmse:3.489072	validation-rmse:5.527893 
#> [43]	train-rmse:3.438863	validation-rmse:5.511447 
#> [44]	train-rmse:3.406678	validation-rmse:5.467687 
#> [45]	train-rmse:3.372448	validation-rmse:5.433576 
#> [46]	train-rmse:3.358391	validation-rmse:5.397279 
#> [47]	train-rmse:3.317797	validation-rmse:5.386522 
#> [48]	train-rmse:3.312103	validation-rmse:5.381718 
#> [49]	train-rmse:3.266421	validation-rmse:5.357289 
#> [50]	train-rmse:3.234406	validation-rmse:5.333181 
#> [51]	train-rmse:3.220228	validation-rmse:5.312136 
#> [52]	train-rmse:3.209395	validation-rmse:5.299967 
#> [53]	train-rmse:3.196762	validation-rmse:5.291840 
#> [54]	train-rmse:3.171610	validation-rmse:5.269127 
#> [55]	train-rmse:3.159932	validation-rmse:5.278459 
#> [56]	train-rmse:3.118847	validation-rmse:5.274917 
#> [57]	train-rmse:3.094442	validation-rmse:5.267086 
#> [58]	train-rmse:3.069675	validation-rmse:5.261168 
#> [59]	train-rmse:3.038636	validation-rmse:5.236191 
#> [60]	train-rmse:3.012390	validation-rmse:5.212652 
#> [61]	train-rmse:3.007638	validation-rmse:5.201974 
#> [62]	train-rmse:2.986033	validation-rmse:5.183938 
#> [63]	train-rmse:2.977695	validation-rmse:5.159170 
#> [64]	train-rmse:2.958482	validation-rmse:5.151190 
#> [65]	train-rmse:2.953726	validation-rmse:5.156280 
#> [66]	train-rmse:2.948603	validation-rmse:5.155305 
#> [67]	train-rmse:2.939267	validation-rmse:5.140646 
#> [68]	train-rmse:2.925462	validation-rmse:5.109831 
#> [69]	train-rmse:2.909066	validation-rmse:5.096382 
#> [70]	train-rmse:2.896814	validation-rmse:5.082329 
#> [1] 
#> [1] "Working on the Ensembles section"
#> [1] 
#> Number of parameters (weights and biases) to estimate: 54 
#> Nguyen-Widrow method
#> Scaling factor= 0.7021598 
#> gamma= 31.9848 	 alpha= 5.7143 	 beta= 9743.533 
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> [1]	train-rmse:27.490253	test-rmse:32.110180 
#> [2]	train-rmse:19.558215	test-rmse:23.024254 
#> [3]	train-rmse:13.936605	test-rmse:16.801325 
#> [4]	train-rmse:9.951791	test-rmse:12.339297 
#> [5]	train-rmse:7.121978	test-rmse:9.192099 
#> [6]	train-rmse:5.123720	test-rmse:6.926699 
#> [7]	train-rmse:3.713473	test-rmse:5.307099 
#> [8]	train-rmse:2.716069	test-rmse:4.174380 
#> [9]	train-rmse:2.019558	test-rmse:3.383045 
#> [10]	train-rmse:1.531869	test-rmse:2.765209 
#> [11]	train-rmse:1.193242	test-rmse:2.337801 
#> [12]	train-rmse:0.964571	test-rmse:2.032874 
#> [13]	train-rmse:0.816436	test-rmse:1.816452 
#> [14]	train-rmse:0.707675	test-rmse:1.653757 
#> [15]	train-rmse:0.644266	test-rmse:1.527340 
#> [16]	train-rmse:0.602184	test-rmse:1.436284 
#> [17]	train-rmse:0.572778	test-rmse:1.354176 
#> [18]	train-rmse:0.548802	test-rmse:1.294636 
#> [19]	train-rmse:0.533587	test-rmse:1.241212 
#> [20]	train-rmse:0.523081	test-rmse:1.196474 
#> [21]	train-rmse:0.512875	test-rmse:1.157068 
#> [22]	train-rmse:0.469597	test-rmse:1.117024 
#> [23]	train-rmse:0.448667	test-rmse:1.112162 
#> [24]	train-rmse:0.437089	test-rmse:1.118983 
#> [25]	train-rmse:0.426563	test-rmse:1.125512 
#> [26]	train-rmse:0.418797	test-rmse:1.124236 
#> [27]	train-rmse:0.413098	test-rmse:1.108128 
#> [28]	train-rmse:0.406378	test-rmse:1.104672 
#> [29]	train-rmse:0.403685	test-rmse:1.106245 
#> [30]	train-rmse:0.399835	test-rmse:1.096319 
#> [31]	train-rmse:0.379717	test-rmse:1.093922 
#> [32]	train-rmse:0.361163	test-rmse:1.074444 
#> [33]	train-rmse:0.350319	test-rmse:1.079178 
#> [34]	train-rmse:0.340864	test-rmse:1.080193 
#> [35]	train-rmse:0.333396	test-rmse:1.084256 
#> [36]	train-rmse:0.331224	test-rmse:1.086860 
#> [37]	train-rmse:0.326091	test-rmse:1.088102 
#> [38]	train-rmse:0.315882	test-rmse:1.087176 
#> [39]	train-rmse:0.305440	test-rmse:1.080749 
#> [40]	train-rmse:0.301023	test-rmse:1.080965 
#> [41]	train-rmse:0.291808	test-rmse:1.090366 
#> [42]	train-rmse:0.289468	test-rmse:1.088508 
#> [43]	train-rmse:0.282597	test-rmse:1.090912 
#> [44]	train-rmse:0.273315	test-rmse:1.093411 
#> [45]	train-rmse:0.264857	test-rmse:1.096418 
#> [46]	train-rmse:0.260963	test-rmse:1.096640 
#> [47]	train-rmse:0.256982	test-rmse:1.091538 
#> [48]	train-rmse:0.249661	test-rmse:1.083645 
#> [49]	train-rmse:0.242181	test-rmse:1.083899 
#> [50]	train-rmse:0.237483	test-rmse:1.083393 
#> [51]	train-rmse:0.229399	test-rmse:1.083261 
#> [52]	train-rmse:0.221265	test-rmse:1.082576 
#> [53]	train-rmse:0.216973	test-rmse:1.076144 
#> [54]	train-rmse:0.213414	test-rmse:1.078512 
#> [55]	train-rmse:0.209591	test-rmse:1.080571 
#> [56]	train-rmse:0.202592	test-rmse:1.084269 
#> [57]	train-rmse:0.199142	test-rmse:1.083227 
#> [58]	train-rmse:0.193955	test-rmse:1.081980 
#> [59]	train-rmse:0.192757	test-rmse:1.082425 
#> [60]	train-rmse:0.187457	test-rmse:1.080489 
#> [61]	train-rmse:0.183877	test-rmse:1.084618 
#> [62]	train-rmse:0.182924	test-rmse:1.084870 
#> [63]	train-rmse:0.175178	test-rmse:1.084432 
#> [64]	train-rmse:0.171186	test-rmse:1.084823 
#> [65]	train-rmse:0.166326	test-rmse:1.085440 
#> [66]	train-rmse:0.162886	test-rmse:1.086030 
#> [67]	train-rmse:0.160580	test-rmse:1.084897 
#> [68]	train-rmse:0.158615	test-rmse:1.085340 
#> [69]	train-rmse:0.155855	test-rmse:1.085073 
#> [70]	train-rmse:0.154191	test-rmse:1.085547 
#> [1]	train-rmse:27.490253	validation-rmse:25.832173 
#> [2]	train-rmse:19.558215	validation-rmse:18.355732 
#> [3]	train-rmse:13.936605	validation-rmse:13.135081 
#> [4]	train-rmse:9.951791	validation-rmse:9.420312 
#> [5]	train-rmse:7.121978	validation-rmse:6.777679 
#> [6]	train-rmse:5.123720	validation-rmse:4.899107 
#> [7]	train-rmse:3.713473	validation-rmse:3.475300 
#> [8]	train-rmse:2.716069	validation-rmse:2.542512 
#> [9]	train-rmse:2.019558	validation-rmse:1.902286 
#> [10]	train-rmse:1.531869	validation-rmse:1.435990 
#> [11]	train-rmse:1.193242	validation-rmse:1.122528 
#> [12]	train-rmse:0.964571	validation-rmse:0.938779 
#> [13]	train-rmse:0.816436	validation-rmse:0.843285 
#> [14]	train-rmse:0.707675	validation-rmse:0.773036 
#> [15]	train-rmse:0.644266	validation-rmse:0.744429 
#> [16]	train-rmse:0.602184	validation-rmse:0.728132 
#> [17]	train-rmse:0.572778	validation-rmse:0.715053 
#> [18]	train-rmse:0.548802	validation-rmse:0.714295 
#> [19]	train-rmse:0.533587	validation-rmse:0.715438 
#> [20]	train-rmse:0.523081	validation-rmse:0.720634 
#> [21]	train-rmse:0.512875	validation-rmse:0.722798 
#> [22]	train-rmse:0.469597	validation-rmse:0.707083 
#> [23]	train-rmse:0.448667	validation-rmse:0.704372 
#> [24]	train-rmse:0.437089	validation-rmse:0.706460 
#> [25]	train-rmse:0.426563	validation-rmse:0.706398 
#> [26]	train-rmse:0.418797	validation-rmse:0.706390 
#> [27]	train-rmse:0.413098	validation-rmse:0.700413 
#> [28]	train-rmse:0.406378	validation-rmse:0.696495 
#> [29]	train-rmse:0.403685	validation-rmse:0.697881 
#> [30]	train-rmse:0.399835	validation-rmse:0.693662 
#> [31]	train-rmse:0.379717	validation-rmse:0.705246 
#> [32]	train-rmse:0.361163	validation-rmse:0.696453 
#> [33]	train-rmse:0.350319	validation-rmse:0.696227 
#> [34]	train-rmse:0.340864	validation-rmse:0.691150 
#> [35]	train-rmse:0.333396	validation-rmse:0.686003 
#> [36]	train-rmse:0.331224	validation-rmse:0.684729 
#> [37]	train-rmse:0.326091	validation-rmse:0.687483 
#> [38]	train-rmse:0.315882	validation-rmse:0.684522 
#> [39]	train-rmse:0.305440	validation-rmse:0.684353 
#> [40]	train-rmse:0.301023	validation-rmse:0.688229 
#> [41]	train-rmse:0.291808	validation-rmse:0.695766 
#> [42]	train-rmse:0.289468	validation-rmse:0.693845 
#> [43]	train-rmse:0.282597	validation-rmse:0.691226 
#> [44]	train-rmse:0.273315	validation-rmse:0.691492 
#> [45]	train-rmse:0.264857	validation-rmse:0.687181 
#> [46]	train-rmse:0.260963	validation-rmse:0.686692 
#> [47]	train-rmse:0.256982	validation-rmse:0.688989 
#> [48]	train-rmse:0.249661	validation-rmse:0.690580 
#> [49]	train-rmse:0.242181	validation-rmse:0.686478 
#> [50]	train-rmse:0.237483	validation-rmse:0.687052 
#> [51]	train-rmse:0.229399	validation-rmse:0.690236 
#> [52]	train-rmse:0.221265	validation-rmse:0.685109 
#> [53]	train-rmse:0.216973	validation-rmse:0.683308 
#> [54]	train-rmse:0.213414	validation-rmse:0.679973 
#> [55]	train-rmse:0.209591	validation-rmse:0.677573 
#> [56]	train-rmse:0.202592	validation-rmse:0.681131 
#> [57]	train-rmse:0.199142	validation-rmse:0.681584 
#> [58]	train-rmse:0.193955	validation-rmse:0.677566 
#> [59]	train-rmse:0.192757	validation-rmse:0.678277 
#> [60]	train-rmse:0.187457	validation-rmse:0.674246 
#> [61]	train-rmse:0.183877	validation-rmse:0.675511 
#> [62]	train-rmse:0.182924	validation-rmse:0.675499 
#> [63]	train-rmse:0.175178	validation-rmse:0.675942 
#> [64]	train-rmse:0.171186	validation-rmse:0.673677 
#> [65]	train-rmse:0.166326	validation-rmse:0.673058 
#> [66]	train-rmse:0.162886	validation-rmse:0.675800 
#> [67]	train-rmse:0.160580	validation-rmse:0.678668 
#> [68]	train-rmse:0.158615	validation-rmse:0.680918 
#> [69]	train-rmse:0.155855	validation-rmse:0.681095 
#> [70]	train-rmse:0.154191	validation-rmse:0.681015 
#> [1] 
#> [1] "Resampling number 2 of 2,"
#> [1] 
#> Number of parameters (weights and biases) to estimate: 22 
#> Nguyen-Widrow method
#> Scaling factor= 0.700792 
#> gamma= 21.2287 	 alpha= 2.1925 	 beta= 33946.27 
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> [1]	train-rmse:28.277515	test-rmse:30.110736 
#> [2]	train-rmse:20.882298	test-rmse:22.909510 
#> [3]	train-rmse:15.861562	test-rmse:17.687938 
#> [4]	train-rmse:12.416475	test-rmse:14.354190 
#> [5]	train-rmse:10.154284	test-rmse:11.968632 
#> [6]	train-rmse:8.625273	test-rmse:10.431818 
#> [7]	train-rmse:7.551258	test-rmse:9.536969 
#> [8]	train-rmse:6.871107	test-rmse:9.020395 
#> [9]	train-rmse:6.332399	test-rmse:8.417406 
#> [10]	train-rmse:5.877929	test-rmse:8.003831 
#> [11]	train-rmse:5.583256	test-rmse:7.686173 
#> [12]	train-rmse:5.357461	test-rmse:7.521732 
#> [13]	train-rmse:5.177813	test-rmse:7.340959 
#> [14]	train-rmse:4.978508	test-rmse:7.150607 
#> [15]	train-rmse:4.891479	test-rmse:7.080080 
#> [16]	train-rmse:4.744884	test-rmse:6.993264 
#> [17]	train-rmse:4.662214	test-rmse:6.927061 
#> [18]	train-rmse:4.525520	test-rmse:6.818803 
#> [19]	train-rmse:4.433407	test-rmse:6.772593 
#> [20]	train-rmse:4.314952	test-rmse:6.727294 
#> [21]	train-rmse:4.243320	test-rmse:6.732334 
#> [22]	train-rmse:4.144099	test-rmse:6.719835 
#> [23]	train-rmse:4.063544	test-rmse:6.602092 
#> [24]	train-rmse:4.032903	test-rmse:6.586293 
#> [25]	train-rmse:3.964202	test-rmse:6.519383 
#> [26]	train-rmse:3.883034	test-rmse:6.482921 
#> [27]	train-rmse:3.811984	test-rmse:6.463596 
#> [28]	train-rmse:3.737798	test-rmse:6.441969 
#> [29]	train-rmse:3.705417	test-rmse:6.415060 
#> [30]	train-rmse:3.656080	test-rmse:6.369394 
#> [31]	train-rmse:3.622331	test-rmse:6.383491 
#> [32]	train-rmse:3.596775	test-rmse:6.354649 
#> [33]	train-rmse:3.535104	test-rmse:6.342884 
#> [34]	train-rmse:3.470141	test-rmse:6.274613 
#> [35]	train-rmse:3.448252	test-rmse:6.260318 
#> [36]	train-rmse:3.398844	test-rmse:6.243118 
#> [37]	train-rmse:3.345566	test-rmse:6.214722 
#> [38]	train-rmse:3.318247	test-rmse:6.220437 
#> [39]	train-rmse:3.283239	test-rmse:6.211611 
#> [40]	train-rmse:3.242139	test-rmse:6.198491 
#> [41]	train-rmse:3.207767	test-rmse:6.172190 
#> [42]	train-rmse:3.172318	test-rmse:6.153572 
#> [43]	train-rmse:3.163499	test-rmse:6.123451 
#> [44]	train-rmse:3.137443	test-rmse:6.125308 
#> [45]	train-rmse:3.107297	test-rmse:6.103262 
#> [46]	train-rmse:3.066038	test-rmse:6.100053 
#> [47]	train-rmse:3.029899	test-rmse:6.118519 
#> [48]	train-rmse:3.012599	test-rmse:6.106778 
#> [49]	train-rmse:2.989105	test-rmse:6.088090 
#> [50]	train-rmse:2.964442	test-rmse:6.079593 
#> [51]	train-rmse:2.950532	test-rmse:6.026705 
#> [52]	train-rmse:2.943438	test-rmse:6.020102 
#> [53]	train-rmse:2.897171	test-rmse:6.008564 
#> [54]	train-rmse:2.868461	test-rmse:6.022581 
#> [55]	train-rmse:2.831478	test-rmse:5.998804 
#> [56]	train-rmse:2.796692	test-rmse:5.970912 
#> [57]	train-rmse:2.774764	test-rmse:5.956661 
#> [58]	train-rmse:2.756135	test-rmse:5.926415 
#> [59]	train-rmse:2.735932	test-rmse:5.895210 
#> [60]	train-rmse:2.720280	test-rmse:5.897837 
#> [61]	train-rmse:2.690177	test-rmse:5.888642 
#> [62]	train-rmse:2.667120	test-rmse:5.907702 
#> [63]	train-rmse:2.660390	test-rmse:5.873050 
#> [64]	train-rmse:2.650320	test-rmse:5.864219 
#> [65]	train-rmse:2.618622	test-rmse:5.843714 
#> [66]	train-rmse:2.585151	test-rmse:5.832271 
#> [67]	train-rmse:2.563087	test-rmse:5.823397 
#> [68]	train-rmse:2.542392	test-rmse:5.800316 
#> [69]	train-rmse:2.530878	test-rmse:5.800596 
#> [70]	train-rmse:2.514367	test-rmse:5.792994 
#> [1]	train-rmse:28.277515	validation-rmse:27.653738 
#> [2]	train-rmse:20.882298	validation-rmse:20.340348 
#> [3]	train-rmse:15.861562	validation-rmse:15.133447 
#> [4]	train-rmse:12.416475	validation-rmse:11.908552 
#> [5]	train-rmse:10.154284	validation-rmse:9.762877 
#> [6]	train-rmse:8.625273	validation-rmse:8.445147 
#> [7]	train-rmse:7.551258	validation-rmse:7.810153 
#> [8]	train-rmse:6.871107	validation-rmse:7.325729 
#> [9]	train-rmse:6.332399	validation-rmse:6.861437 
#> [10]	train-rmse:5.877929	validation-rmse:6.485108 
#> [11]	train-rmse:5.583256	validation-rmse:6.306457 
#> [12]	train-rmse:5.357461	validation-rmse:6.173198 
#> [13]	train-rmse:5.177813	validation-rmse:6.126119 
#> [14]	train-rmse:4.978508	validation-rmse:6.047606 
#> [15]	train-rmse:4.891479	validation-rmse:6.029571 
#> [16]	train-rmse:4.744884	validation-rmse:5.899302 
#> [17]	train-rmse:4.662214	validation-rmse:5.859948 
#> [18]	train-rmse:4.525520	validation-rmse:5.805710 
#> [19]	train-rmse:4.433407	validation-rmse:5.781996 
#> [20]	train-rmse:4.314952	validation-rmse:5.726479 
#> [21]	train-rmse:4.243320	validation-rmse:5.755665 
#> [22]	train-rmse:4.144099	validation-rmse:5.685680 
#> [23]	train-rmse:4.063544	validation-rmse:5.590271 
#> [24]	train-rmse:4.032903	validation-rmse:5.559487 
#> [25]	train-rmse:3.964202	validation-rmse:5.535275 
#> [26]	train-rmse:3.883034	validation-rmse:5.459853 
#> [27]	train-rmse:3.811984	validation-rmse:5.436963 
#> [28]	train-rmse:3.737798	validation-rmse:5.461953 
#> [29]	train-rmse:3.705417	validation-rmse:5.446077 
#> [30]	train-rmse:3.656080	validation-rmse:5.417037 
#> [31]	train-rmse:3.622331	validation-rmse:5.426145 
#> [32]	train-rmse:3.596775	validation-rmse:5.404401 
#> [33]	train-rmse:3.535104	validation-rmse:5.368163 
#> [34]	train-rmse:3.470141	validation-rmse:5.345927 
#> [35]	train-rmse:3.448252	validation-rmse:5.321346 
#> [36]	train-rmse:3.398844	validation-rmse:5.290650 
#> [37]	train-rmse:3.345566	validation-rmse:5.240283 
#> [38]	train-rmse:3.318247	validation-rmse:5.230765 
#> [39]	train-rmse:3.283239	validation-rmse:5.199362 
#> [40]	train-rmse:3.242139	validation-rmse:5.190153 
#> [41]	train-rmse:3.207767	validation-rmse:5.178812 
#> [42]	train-rmse:3.172318	validation-rmse:5.139200 
#> [43]	train-rmse:3.163499	validation-rmse:5.130420 
#> [44]	train-rmse:3.137443	validation-rmse:5.130609 
#> [45]	train-rmse:3.107297	validation-rmse:5.094120 
#> [46]	train-rmse:3.066038	validation-rmse:5.083214 
#> [47]	train-rmse:3.029899	validation-rmse:5.061869 
#> [48]	train-rmse:3.012599	validation-rmse:5.057425 
#> [49]	train-rmse:2.989105	validation-rmse:5.037051 
#> [50]	train-rmse:2.964442	validation-rmse:5.044261 
#> [51]	train-rmse:2.950532	validation-rmse:5.033783 
#> [52]	train-rmse:2.943438	validation-rmse:5.023906 
#> [53]	train-rmse:2.897171	validation-rmse:5.023613 
#> [54]	train-rmse:2.868461	validation-rmse:4.998746 
#> [55]	train-rmse:2.831478	validation-rmse:4.984926 
#> [56]	train-rmse:2.796692	validation-rmse:4.953176 
#> [57]	train-rmse:2.774764	validation-rmse:4.952464 
#> [58]	train-rmse:2.756135	validation-rmse:4.949343 
#> [59]	train-rmse:2.735932	validation-rmse:4.960286 
#> [60]	train-rmse:2.720280	validation-rmse:4.944878 
#> [61]	train-rmse:2.690177	validation-rmse:4.914419 
#> [62]	train-rmse:2.667120	validation-rmse:4.938247 
#> [63]	train-rmse:2.660390	validation-rmse:4.931497 
#> [64]	train-rmse:2.650320	validation-rmse:4.935461 
#> [65]	train-rmse:2.618622	validation-rmse:4.923912 
#> [66]	train-rmse:2.585151	validation-rmse:4.908638 
#> [67]	train-rmse:2.563087	validation-rmse:4.895000 
#> [68]	train-rmse:2.542392	validation-rmse:4.890032 
#> [69]	train-rmse:2.530878	validation-rmse:4.878960 
#> [70]	train-rmse:2.514367	validation-rmse:4.868972 
#> [1] 
#> [1] "Working on the Ensembles section"
#> [1] 
#> Number of parameters (weights and biases) to estimate: 54 
#> Nguyen-Widrow method
#> Scaling factor= 0.7019513 
#> gamma= 36.4663 	 alpha= 5.3812 	 beta= 11184.78 
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> [1]	train-rmse:27.621312	test-rmse:28.688884 
#> [2]	train-rmse:19.650639	test-rmse:20.879178 
#> [3]	train-rmse:13.990256	test-rmse:15.195529 
#> [4]	train-rmse:9.993941	test-rmse:11.136352 
#> [5]	train-rmse:7.154531	test-rmse:8.200107 
#> [6]	train-rmse:5.145060	test-rmse:6.087887 
#> [7]	train-rmse:3.721034	test-rmse:4.573770 
#> [8]	train-rmse:2.710030	test-rmse:3.495397 
#> [9]	train-rmse:2.000963	test-rmse:2.730296 
#> [10]	train-rmse:1.507348	test-rmse:2.199597 
#> [11]	train-rmse:1.168745	test-rmse:1.825602 
#> [12]	train-rmse:0.941016	test-rmse:1.592568 
#> [13]	train-rmse:0.787837	test-rmse:1.429696 
#> [14]	train-rmse:0.679847	test-rmse:1.304266 
#> [15]	train-rmse:0.612114	test-rmse:1.235998 
#> [16]	train-rmse:0.558899	test-rmse:1.175557 
#> [17]	train-rmse:0.528627	test-rmse:1.125119 
#> [18]	train-rmse:0.508236	test-rmse:1.085925 
#> [19]	train-rmse:0.479501	test-rmse:1.058625 
#> [20]	train-rmse:0.463613	test-rmse:1.052005 
#> [21]	train-rmse:0.447158	test-rmse:1.044134 
#> [22]	train-rmse:0.440875	test-rmse:1.034176 
#> [23]	train-rmse:0.436160	test-rmse:1.021020 
#> [24]	train-rmse:0.424089	test-rmse:1.019442 
#> [25]	train-rmse:0.415948	test-rmse:1.017073 
#> [26]	train-rmse:0.409145	test-rmse:1.010246 
#> [27]	train-rmse:0.403155	test-rmse:1.008974 
#> [28]	train-rmse:0.396269	test-rmse:1.001859 
#> [29]	train-rmse:0.388570	test-rmse:0.997404 
#> [30]	train-rmse:0.367946	test-rmse:0.988246 
#> [31]	train-rmse:0.355867	test-rmse:0.985757 
#> [32]	train-rmse:0.348772	test-rmse:0.978063 
#> [33]	train-rmse:0.344290	test-rmse:0.976274 
#> [34]	train-rmse:0.338605	test-rmse:0.973482 
#> [35]	train-rmse:0.332635	test-rmse:0.969367 
#> [36]	train-rmse:0.325480	test-rmse:0.968882 
#> [37]	train-rmse:0.311392	test-rmse:0.960815 
#> [38]	train-rmse:0.307876	test-rmse:0.957117 
#> [39]	train-rmse:0.301121	test-rmse:0.961341 
#> [40]	train-rmse:0.292149	test-rmse:0.960427 
#> [41]	train-rmse:0.282818	test-rmse:0.964506 
#> [42]	train-rmse:0.278837	test-rmse:0.963391 
#> [43]	train-rmse:0.268637	test-rmse:0.963308 
#> [44]	train-rmse:0.257547	test-rmse:0.966687 
#> [45]	train-rmse:0.250615	test-rmse:0.967755 
#> [46]	train-rmse:0.239646	test-rmse:0.967187 
#> [47]	train-rmse:0.237294	test-rmse:0.966015 
#> [48]	train-rmse:0.234782	test-rmse:0.965797 
#> [49]	train-rmse:0.231477	test-rmse:0.961542 
#> [50]	train-rmse:0.225015	test-rmse:0.963775 
#> [51]	train-rmse:0.219165	test-rmse:0.964368 
#> [52]	train-rmse:0.213663	test-rmse:0.964868 
#> [53]	train-rmse:0.208788	test-rmse:0.964958 
#> [54]	train-rmse:0.207119	test-rmse:0.965674 
#> [55]	train-rmse:0.203836	test-rmse:0.967984 
#> [56]	train-rmse:0.199716	test-rmse:0.966455 
#> [57]	train-rmse:0.193871	test-rmse:0.966643 
#> [58]	train-rmse:0.190569	test-rmse:0.963094 
#> [59]	train-rmse:0.184683	test-rmse:0.963604 
#> [60]	train-rmse:0.183089	test-rmse:0.963886 
#> [61]	train-rmse:0.176144	test-rmse:0.963669 
#> [62]	train-rmse:0.174598	test-rmse:0.963585 
#> [63]	train-rmse:0.168975	test-rmse:0.963066 
#> [64]	train-rmse:0.167391	test-rmse:0.962092 
#> [65]	train-rmse:0.163914	test-rmse:0.962890 
#> [66]	train-rmse:0.162084	test-rmse:0.964517 
#> [67]	train-rmse:0.161238	test-rmse:0.963340 
#> [68]	train-rmse:0.159824	test-rmse:0.961796 
#> [69]	train-rmse:0.155739	test-rmse:0.965794 
#> [70]	train-rmse:0.154449	test-rmse:0.965910 
#> [1]	train-rmse:27.621312	validation-rmse:28.745681 
#> [2]	train-rmse:19.650639	validation-rmse:20.615609 
#> [3]	train-rmse:13.990256	validation-rmse:14.668584 
#> [4]	train-rmse:9.993941	validation-rmse:10.420856 
#> [5]	train-rmse:7.154531	validation-rmse:7.479705 
#> [6]	train-rmse:5.145060	validation-rmse:5.416504 
#> [7]	train-rmse:3.721034	validation-rmse:3.900239 
#> [8]	train-rmse:2.710030	validation-rmse:2.873863 
#> [9]	train-rmse:2.000963	validation-rmse:2.137773 
#> [10]	train-rmse:1.507348	validation-rmse:1.607763 
#> [11]	train-rmse:1.168745	validation-rmse:1.276273 
#> [12]	train-rmse:0.941016	validation-rmse:1.054383 
#> [13]	train-rmse:0.787837	validation-rmse:0.904382 
#> [14]	train-rmse:0.679847	validation-rmse:0.827636 
#> [15]	train-rmse:0.612114	validation-rmse:0.782118 
#> [16]	train-rmse:0.558899	validation-rmse:0.747922 
#> [17]	train-rmse:0.528627	validation-rmse:0.710768 
#> [18]	train-rmse:0.508236	validation-rmse:0.700386 
#> [19]	train-rmse:0.479501	validation-rmse:0.697078 
#> [20]	train-rmse:0.463613	validation-rmse:0.692623 
#> [21]	train-rmse:0.447158	validation-rmse:0.696394 
#> [22]	train-rmse:0.440875	validation-rmse:0.692886 
#> [23]	train-rmse:0.436160	validation-rmse:0.691236 
#> [24]	train-rmse:0.424089	validation-rmse:0.695183 
#> [25]	train-rmse:0.415948	validation-rmse:0.694928 
#> [26]	train-rmse:0.409145	validation-rmse:0.695020 
#> [27]	train-rmse:0.403155	validation-rmse:0.689865 
#> [28]	train-rmse:0.396269	validation-rmse:0.696215 
#> [29]	train-rmse:0.388570	validation-rmse:0.692714 
#> [30]	train-rmse:0.367946	validation-rmse:0.678744 
#> [31]	train-rmse:0.355867	validation-rmse:0.675658 
#> [32]	train-rmse:0.348772	validation-rmse:0.675944 
#> [33]	train-rmse:0.344290	validation-rmse:0.674837 
#> [34]	train-rmse:0.338605	validation-rmse:0.671756 
#> [35]	train-rmse:0.332635	validation-rmse:0.667611 
#> [36]	train-rmse:0.325480	validation-rmse:0.672973 
#> [37]	train-rmse:0.311392	validation-rmse:0.657771 
#> [38]	train-rmse:0.307876	validation-rmse:0.655720 
#> [39]	train-rmse:0.301121	validation-rmse:0.657255 
#> [40]	train-rmse:0.292149	validation-rmse:0.647873 
#> [41]	train-rmse:0.282818	validation-rmse:0.647452 
#> [42]	train-rmse:0.278837	validation-rmse:0.643171 
#> [43]	train-rmse:0.268637	validation-rmse:0.644611 
#> [44]	train-rmse:0.257547	validation-rmse:0.643934 
#> [45]	train-rmse:0.250615	validation-rmse:0.641804 
#> [46]	train-rmse:0.239646	validation-rmse:0.638694 
#> [47]	train-rmse:0.237294	validation-rmse:0.640108 
#> [48]	train-rmse:0.234782	validation-rmse:0.643097 
#> [49]	train-rmse:0.231477	validation-rmse:0.639108 
#> [50]	train-rmse:0.225015	validation-rmse:0.638250 
#> [51]	train-rmse:0.219165	validation-rmse:0.635629 
#> [52]	train-rmse:0.213663	validation-rmse:0.636649 
#> [53]	train-rmse:0.208788	validation-rmse:0.638036 
#> [54]	train-rmse:0.207119	validation-rmse:0.638350 
#> [55]	train-rmse:0.203836	validation-rmse:0.639420 
#> [56]	train-rmse:0.199716	validation-rmse:0.636272 
#> [57]	train-rmse:0.193871	validation-rmse:0.635798 
#> [58]	train-rmse:0.190569	validation-rmse:0.635833 
#> [59]	train-rmse:0.184683	validation-rmse:0.636105 
#> [60]	train-rmse:0.183089	validation-rmse:0.637665 
#> [61]	train-rmse:0.176144	validation-rmse:0.640455 
#> [62]	train-rmse:0.174598	validation-rmse:0.639894 
#> [63]	train-rmse:0.168975	validation-rmse:0.639536 
#> [64]	train-rmse:0.167391	validation-rmse:0.639382 
#> [65]	train-rmse:0.163914	validation-rmse:0.638524 
#> [66]	train-rmse:0.162084	validation-rmse:0.639331 
#> [67]	train-rmse:0.161238	validation-rmse:0.639758 
#> [68]	train-rmse:0.159824	validation-rmse:0.641209 
#> [69]	train-rmse:0.155739	validation-rmse:0.643835 
#> [70]	train-rmse:0.154449	validation-rmse:0.644908 





#> [1] 
#> [1] "0.05 and 0.95 outliers for Cement, column number 1"
#> [1] "IQR = 157.625, 0.05 = 143.745 0.95 = 480"
#> [1] Cement             Blast_Furnace_Slag Fly_Ash            Water             
#> [5] Superplasticizer   Coarse_Aggregate   Fine_Aggregate     Age               
#> [9] y                 
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for Blast_Furnace_Slag, column number 2"
#> [1] "IQR = 142.95, 0.05 = 0 0.95 = 236"
#> [1] Cement             Blast_Furnace_Slag Fly_Ash            Water             
#> [5] Superplasticizer   Coarse_Aggregate   Fine_Aggregate     Age               
#> [9] y                 
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for Fly_Ash, column number 3"
#> [1] "IQR = 118.3, 0.05 = 0 0.95 = 167"
#> [1] Cement             Blast_Furnace_Slag Fly_Ash            Water             
#> [5] Superplasticizer   Coarse_Aggregate   Fine_Aggregate     Age               
#> [9] y                 
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for Water, column number 4"
#> [1] "IQR = 27.1, 0.05 = 146.1 0.95 = 228"
#> [1] Cement             Blast_Furnace_Slag Fly_Ash            Water             
#> [5] Superplasticizer   Coarse_Aggregate   Fine_Aggregate     Age               
#> [9] y                 
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for Superplasticizer, column number 5"
#> [1] "IQR = 10.2, 0.05 = 0 0.95 = 16.055"
#>     Cement Blast_Furnace_Slag Fly_Ash Water Superplasticizer Coarse_Aggregate
#> 169    469              117.2       0 137.8             32.2            852.1
#> 123    469              117.2       0 137.8             32.2            852.1
#> 100    469              117.2       0 137.8             32.2            852.1
#> 77     469              117.2       0 137.8             32.2            852.1
#> 146    469              117.2       0 137.8             32.2            852.1
#>     Fine_Aggregate Age    y
#> 169          840.5  91 70.7
#> 123          840.5  28 66.9
#> 100          840.5   7 54.9
#> 77           840.5   3 40.2
#> 146          840.5  56 69.3
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for Coarse_Aggregate, column number 6"
#> [1] "IQR = 97.4000000000001, 0.05 = 842 0.95 = 1104"
#> [1] Cement             Blast_Furnace_Slag Fly_Ash            Water             
#> [5] Superplasticizer   Coarse_Aggregate   Fine_Aggregate     Age               
#> [9] y                 
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for Fine_Aggregate, column number 7"
#> [1] "IQR = 93.0500000000001, 0.05 = 613 0.95 = 898.09"
#> [1] Cement             Blast_Furnace_Slag Fly_Ash            Water             
#> [5] Superplasticizer   Coarse_Aggregate   Fine_Aggregate     Age               
#> [9] y                 
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for Age, column number 8"
#> [1] "IQR = 49, 0.05 = 3 0.95 = 180"
#>     Cement Blast_Furnace_Slag Fly_Ash Water Superplasticizer Coarse_Aggregate
#> 799  500.0                0.0       0   200                0           1125.0
#> 67   139.6              209.4       0   192                0           1047.0
#> 770  331.0                0.0       0   192                0            978.0
#> 18   342.0               38.0       0   228                0            932.0
#> 26   380.0                0.0       0   228                0            932.0
#> 611  236.0                0.0       0   193                0            968.0
#> 815  310.0                0.0       0   192                0            970.0
#> 57   475.0                0.0       0   228                0            932.0
#> 32   266.0              114.0       0   228                0            932.0
#> 3    332.5              142.5       0   228                0            932.0
#> 25   380.0                0.0       0   228                0            932.0
#> 13   427.5               47.5       0   228                0            932.0
#> 64   190.0              190.0       0   228                0            932.0
#> 623  307.0                0.0       0   193                0            968.0
#> 36   237.5              237.5       0   228                0            932.0
#> 4    332.5              142.5       0   228                0            932.0
#> 31   304.0               76.0       0   228                0            932.0
#> 5    198.6              132.4       0   192                0            978.4
#> 35   190.0              190.0       0   228                0            932.0
#> 43   237.5              237.5       0   228                0            932.0
#> 617  277.0                0.0       0   191                0            968.0
#> 66   342.0               38.0       0   228                0            932.0
#> 27   380.0               95.0       0   228                0            932.0
#> 42   427.5               47.5       0   228                0            932.0
#> 621  254.0                0.0       0   198                0            968.0
#> 821  525.0                0.0       0   189                0           1125.0
#> 793  349.0                0.0       0   192                0           1047.0
#> 7    380.0               95.0       0   228                0            932.0
#> 61   304.0               76.0       0   228                0            932.0
#> 757  540.0                0.0       0   173                0           1125.0
#> 605  339.0                0.0       0   197                0            968.0
#> 34   475.0                0.0       0   228                0            932.0
#> 62   266.0              114.0       0   228                0            932.0
#>     Fine_Aggregate Age     y
#> 799          613.0 270 55.16
#> 67           806.9 360 44.70
#> 770          825.0 360 41.24
#> 18           670.0 365 56.14
#> 26           670.0 270 53.30
#> 611          885.0 365 25.08
#> 815          850.0 360 38.11
#> 57           594.0 365 41.93
#> 32           670.0 365 52.91
#> 3            594.0 270 40.27
#> 25           670.0 365 52.52
#> 13           594.0 270 43.01
#> 64           670.0 270 50.66
#> 623          812.0 365 36.15
#> 36           594.0 270 38.41
#> 4            594.0 365 41.05
#> 31           670.0 365 55.26
#> 5            825.5 360 44.30
#> 35           670.0 365 53.69
#> 43           594.0 365 39.00
#> 617          856.0 360 33.70
#> 66           670.0 270 55.06
#> 27           594.0 270 41.15
#> 42           594.0 365 43.70
#> 621          863.0 365 29.79
#> 821          613.0 270 67.11
#> 793          806.0 360 42.13
#> 7            594.0 365 43.70
#> 61           670.0 270 54.38
#> 757          613.0 270 74.17
#> 605          781.0 365 38.89
#> 34           594.0 270 42.13
#> 62           670.0 270 51.73
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for y, column number 9"
#> [1] "IQR = 22.425, 0.05 = 10.961 0.95 = 66.802"
#> [1] Cement             Blast_Furnace_Slag Fly_Ash            Water             
#> [5] Superplasticizer   Coarse_Aggregate   Fine_Aggregate     Age               
#> [9] y                 
#> <0 rows> (or 0-length row.names)
#> [1] 
#> $head_of_data
#> 
#> $accuracy_plot

#> 
#> $overfitting_plot

#> 
#> $histograms

#> 
#> $boxplots

#> 
#> $predictor_vs_target

#> 
#> $final_results_table
#> 
#> $data_correlation
#> 
#> $data_summary
#> 
#> $head_of_ensemble
#> 
#> $ensemble_correlation
#> 
#> $accuracy_barchart

#> 
#> $train_vs_holdout

#> 
#> $duration_barchart

#> 
#> $overfitting_barchart

#> 
#> $bias_barchart

#> 
#> $MSE_barchart

#> 
#> $MAE_barchart

#> 
#> $SSE_barchart

#> 
#> $bias_plot

#> 
#> $MSE_plot

#> 
#> $MAE_plot

#> 
#> $SSE_plot

#> 
#> $colnum
#> [1] 9
#> 
#> $numresamples
#> [1] 2
#> 
#> $save_all_trained_modesl
#> [1] "N"
#> 
#> $remove_ensemble_correlations_greater_than
#> [1] 1
#> 
#> $train_amount
#> [1] 0.6
#> 
#> $test_amount
#> [1] 0.2
#> 
#> $validation_amount
#> [1] 0.2
#> 

 Numeric(data = Insurance,
  colnum = 7,
  numresamples = 2,
  how_to_handle_strings = 1,
  do_you_have_new_data = "N",
  save_all_trained_models = "N",
  remove_ensemble_correlations_greater_than = 1.00,
  train_amount = 0.60,
  test_amount = 0.20,
  validation_amount = 0.20)



#> [1] 
#> [1] "Resampling number 1 of 2,"
#> [1] 
#> Number of parameters (weights and biases) to estimate: 18 
#> Nguyen-Widrow method
#> Scaling factor= 0.7005963 
#> gamma= 17.7991 	 alpha= 2.516 	 beta= 41758.61 
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> [1]	train-rmse:13417.611562	test-rmse:11884.182714 
#> [2]	train-rmse:10022.239499	test-rmse:9015.516790 
#> [3]	train-rmse:7774.840027	test-rmse:7069.020388 
#> [4]	train-rmse:6358.520508	test-rmse:5882.003968 
#> [5]	train-rmse:5508.236119	test-rmse:5199.519524 
#> [6]	train-rmse:5006.537995	test-rmse:4803.929819 
#> [7]	train-rmse:4719.992006	test-rmse:4577.662788 
#> [8]	train-rmse:4559.660806	test-rmse:4468.729871 
#> [9]	train-rmse:4468.103109	test-rmse:4440.929630 
#> [10]	train-rmse:4408.711450	test-rmse:4390.289015 
#> [11]	train-rmse:4378.671306	test-rmse:4373.381760 
#> [12]	train-rmse:4339.295287	test-rmse:4380.011581 
#> [13]	train-rmse:4314.162701	test-rmse:4375.613971 
#> [14]	train-rmse:4278.115433	test-rmse:4361.855787 
#> [15]	train-rmse:4254.869908	test-rmse:4364.741404 
#> [16]	train-rmse:4221.821198	test-rmse:4358.468732 
#> [17]	train-rmse:4205.913225	test-rmse:4361.405038 
#> [18]	train-rmse:4188.252081	test-rmse:4380.221311 
#> [19]	train-rmse:4126.778378	test-rmse:4397.684621 
#> [20]	train-rmse:4090.072749	test-rmse:4407.454192 
#> [21]	train-rmse:4079.202682	test-rmse:4416.650236 
#> [22]	train-rmse:4062.414947	test-rmse:4420.892913 
#> [23]	train-rmse:4041.999683	test-rmse:4441.450825 
#> [24]	train-rmse:4033.591920	test-rmse:4436.054544 
#> [25]	train-rmse:4008.590513	test-rmse:4473.852247 
#> [26]	train-rmse:3992.910166	test-rmse:4479.556825 
#> [27]	train-rmse:3965.335111	test-rmse:4471.081082 
#> [28]	train-rmse:3954.472097	test-rmse:4471.775455 
#> [29]	train-rmse:3934.154417	test-rmse:4447.220987 
#> [30]	train-rmse:3926.105628	test-rmse:4447.863521 
#> [31]	train-rmse:3905.432519	test-rmse:4457.609335 
#> [32]	train-rmse:3886.592228	test-rmse:4460.696561 
#> [33]	train-rmse:3872.348341	test-rmse:4463.895113 
#> [34]	train-rmse:3865.158931	test-rmse:4471.656708 
#> [35]	train-rmse:3842.406466	test-rmse:4472.705023 
#> [36]	train-rmse:3823.537417	test-rmse:4466.972012 
#> [37]	train-rmse:3814.743728	test-rmse:4474.746160 
#> [38]	train-rmse:3798.026870	test-rmse:4500.944224 
#> [39]	train-rmse:3783.209432	test-rmse:4496.962494 
#> [40]	train-rmse:3767.795960	test-rmse:4504.937395 
#> [41]	train-rmse:3736.394206	test-rmse:4510.321837 
#> [42]	train-rmse:3729.787024	test-rmse:4513.091944 
#> [43]	train-rmse:3699.899544	test-rmse:4510.091305 
#> [44]	train-rmse:3685.372669	test-rmse:4492.401282 
#> [45]	train-rmse:3675.347523	test-rmse:4497.145864 
#> [46]	train-rmse:3646.371072	test-rmse:4499.173016 
#> [47]	train-rmse:3629.731846	test-rmse:4500.129067 
#> [48]	train-rmse:3609.465401	test-rmse:4504.328132 
#> [49]	train-rmse:3583.360979	test-rmse:4515.746697 
#> [50]	train-rmse:3574.531700	test-rmse:4527.842787 
#> [51]	train-rmse:3554.152870	test-rmse:4543.684378 
#> [52]	train-rmse:3544.886241	test-rmse:4557.155897 
#> [53]	train-rmse:3529.718802	test-rmse:4559.085046 
#> [54]	train-rmse:3524.432668	test-rmse:4553.483527 
#> [55]	train-rmse:3522.301674	test-rmse:4555.285308 
#> [56]	train-rmse:3499.952010	test-rmse:4558.147335 
#> [57]	train-rmse:3483.830587	test-rmse:4545.522841 
#> [58]	train-rmse:3472.969363	test-rmse:4551.644445 
#> [59]	train-rmse:3449.461905	test-rmse:4563.649121 
#> [60]	train-rmse:3443.261947	test-rmse:4568.417779 
#> [61]	train-rmse:3432.877501	test-rmse:4570.345394 
#> [62]	train-rmse:3412.557318	test-rmse:4580.292639 
#> [63]	train-rmse:3396.165946	test-rmse:4575.984225 
#> [64]	train-rmse:3385.776145	test-rmse:4581.239220 
#> [65]	train-rmse:3353.629777	test-rmse:4584.239765 
#> [66]	train-rmse:3331.733869	test-rmse:4587.148632 
#> [67]	train-rmse:3313.615715	test-rmse:4586.893385 
#> [68]	train-rmse:3309.040213	test-rmse:4589.772622 
#> [69]	train-rmse:3293.374573	test-rmse:4585.435212 
#> [70]	train-rmse:3276.515112	test-rmse:4583.916366 
#> [1]	train-rmse:13417.611562	validation-rmse:13224.624552 
#> [2]	train-rmse:10022.239499	validation-rmse:9847.571450 
#> [3]	train-rmse:7774.840027	validation-rmse:7596.959385 
#> [4]	train-rmse:6358.520508	validation-rmse:6179.119000 
#> [5]	train-rmse:5508.236119	validation-rmse:5320.448598 
#> [6]	train-rmse:5006.537995	validation-rmse:4846.824612 
#> [7]	train-rmse:4719.992006	validation-rmse:4558.723958 
#> [8]	train-rmse:4559.660806	validation-rmse:4405.609994 
#> [9]	train-rmse:4468.103109	validation-rmse:4353.510291 
#> [10]	train-rmse:4408.711450	validation-rmse:4281.568093 
#> [11]	train-rmse:4378.671306	validation-rmse:4253.763430 
#> [12]	train-rmse:4339.295287	validation-rmse:4259.091827 
#> [13]	train-rmse:4314.162701	validation-rmse:4248.192283 
#> [14]	train-rmse:4278.115433	validation-rmse:4227.390894 
#> [15]	train-rmse:4254.869908	validation-rmse:4224.228946 
#> [16]	train-rmse:4221.821198	validation-rmse:4242.233479 
#> [17]	train-rmse:4205.913225	validation-rmse:4240.934583 
#> [18]	train-rmse:4188.252081	validation-rmse:4237.694680 
#> [19]	train-rmse:4126.778378	validation-rmse:4255.164060 
#> [20]	train-rmse:4090.072749	validation-rmse:4251.033575 
#> [21]	train-rmse:4079.202682	validation-rmse:4245.561370 
#> [22]	train-rmse:4062.414947	validation-rmse:4250.798983 
#> [23]	train-rmse:4041.999683	validation-rmse:4257.333034 
#> [24]	train-rmse:4033.591920	validation-rmse:4259.853946 
#> [25]	train-rmse:4008.590513	validation-rmse:4263.531244 
#> [26]	train-rmse:3992.910166	validation-rmse:4264.545804 
#> [27]	train-rmse:3965.335111	validation-rmse:4291.810013 
#> [28]	train-rmse:3954.472097	validation-rmse:4291.113013 
#> [29]	train-rmse:3934.154417	validation-rmse:4291.497645 
#> [30]	train-rmse:3926.105628	validation-rmse:4289.953921 
#> [31]	train-rmse:3905.432519	validation-rmse:4299.733627 
#> [32]	train-rmse:3886.592228	validation-rmse:4301.892210 
#> [33]	train-rmse:3872.348341	validation-rmse:4320.461506 
#> [34]	train-rmse:3865.158931	validation-rmse:4325.510417 
#> [35]	train-rmse:3842.406466	validation-rmse:4326.537332 
#> [36]	train-rmse:3823.537417	validation-rmse:4356.573454 
#> [37]	train-rmse:3814.743728	validation-rmse:4377.149601 
#> [38]	train-rmse:3798.026870	validation-rmse:4380.521945 
#> [39]	train-rmse:3783.209432	validation-rmse:4405.651286 
#> [40]	train-rmse:3767.795960	validation-rmse:4414.561752 
#> [41]	train-rmse:3736.394206	validation-rmse:4417.602510 
#> [42]	train-rmse:3729.787024	validation-rmse:4420.964627 
#> [43]	train-rmse:3699.899544	validation-rmse:4431.713561 
#> [44]	train-rmse:3685.372669	validation-rmse:4456.343639 
#> [45]	train-rmse:3675.347523	validation-rmse:4453.084719 
#> [46]	train-rmse:3646.371072	validation-rmse:4451.833278 
#> [47]	train-rmse:3629.731846	validation-rmse:4453.850949 
#> [48]	train-rmse:3609.465401	validation-rmse:4456.964482 
#> [49]	train-rmse:3583.360979	validation-rmse:4467.750306 
#> [50]	train-rmse:3574.531700	validation-rmse:4469.407528 
#> [51]	train-rmse:3554.152870	validation-rmse:4487.869120 
#> [52]	train-rmse:3544.886241	validation-rmse:4480.082842 
#> [53]	train-rmse:3529.718802	validation-rmse:4478.613069 
#> [54]	train-rmse:3524.432668	validation-rmse:4477.693925 
#> [55]	train-rmse:3522.301674	validation-rmse:4481.020387 
#> [56]	train-rmse:3499.952010	validation-rmse:4513.292549 
#> [57]	train-rmse:3483.830587	validation-rmse:4513.331969 
#> [58]	train-rmse:3472.969363	validation-rmse:4514.103488 
#> [59]	train-rmse:3449.461905	validation-rmse:4516.644931 
#> [60]	train-rmse:3443.261947	validation-rmse:4536.696497 
#> [61]	train-rmse:3432.877501	validation-rmse:4542.247839 
#> [62]	train-rmse:3412.557318	validation-rmse:4562.965312 
#> [63]	train-rmse:3396.165946	validation-rmse:4568.572683 
#> [64]	train-rmse:3385.776145	validation-rmse:4574.974794 
#> [65]	train-rmse:3353.629777	validation-rmse:4582.140402 
#> [66]	train-rmse:3331.733869	validation-rmse:4580.264204 
#> [67]	train-rmse:3313.615715	validation-rmse:4591.354638 
#> [68]	train-rmse:3309.040213	validation-rmse:4592.874745 
#> [69]	train-rmse:3293.374573	validation-rmse:4593.361955 
#> [70]	train-rmse:3276.515112	validation-rmse:4600.692743 
#> [1] 
#> [1] "Working on the Ensembles section"
#> [1] 
#> Number of parameters (weights and biases) to estimate: 54 
#> Nguyen-Widrow method
#> Scaling factor= 0.7015519 
#> gamma= 33.0998 	 alpha= 6.1001 	 beta= 16047.64 
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> [1]	train-rmse:11676.716089	test-rmse:14335.384317 
#> [2]	train-rmse:8354.095279	test-rmse:10553.029297 
#> [3]	train-rmse:5989.394793	test-rmse:7924.410920 
#> [4]	train-rmse:4310.489824	test-rmse:6087.028331 
#> [5]	train-rmse:3109.404834	test-rmse:4777.556680 
#> [6]	train-rmse:2250.237844	test-rmse:3865.883116 
#> [7]	train-rmse:1640.817172	test-rmse:3231.758979 
#> [8]	train-rmse:1209.100401	test-rmse:2816.527459 
#> [9]	train-rmse:905.989475	test-rmse:2538.832621 
#> [10]	train-rmse:691.590253	test-rmse:2335.663299 
#> [11]	train-rmse:542.013279	test-rmse:2186.264749 
#> [12]	train-rmse:440.193932	test-rmse:2091.654558 
#> [13]	train-rmse:372.662046	test-rmse:2012.557950 
#> [14]	train-rmse:328.422724	test-rmse:1955.101452 
#> [15]	train-rmse:298.196321	test-rmse:1913.263979 
#> [16]	train-rmse:279.537645	test-rmse:1882.413140 
#> [17]	train-rmse:265.796462	test-rmse:1859.623964 
#> [18]	train-rmse:249.648340	test-rmse:1853.134091 
#> [19]	train-rmse:241.843262	test-rmse:1837.120771 
#> [20]	train-rmse:234.078816	test-rmse:1825.105837 
#> [21]	train-rmse:227.312846	test-rmse:1810.797398 
#> [22]	train-rmse:222.191300	test-rmse:1804.764481 
#> [23]	train-rmse:212.213766	test-rmse:1801.559191 
#> [24]	train-rmse:210.796199	test-rmse:1792.776360 
#> [25]	train-rmse:205.543606	test-rmse:1792.293552 
#> [26]	train-rmse:202.053346	test-rmse:1790.398641 
#> [27]	train-rmse:192.833947	test-rmse:1790.204722 
#> [28]	train-rmse:184.847917	test-rmse:1789.228178 
#> [29]	train-rmse:182.264282	test-rmse:1782.947741 
#> [30]	train-rmse:177.181996	test-rmse:1782.530513 
#> [31]	train-rmse:174.610467	test-rmse:1780.739959 
#> [32]	train-rmse:167.466793	test-rmse:1779.946488 
#> [33]	train-rmse:163.238027	test-rmse:1780.239539 
#> [34]	train-rmse:159.410908	test-rmse:1775.406309 
#> [35]	train-rmse:157.277497	test-rmse:1775.334236 
#> [36]	train-rmse:155.447400	test-rmse:1774.776873 
#> [37]	train-rmse:152.578687	test-rmse:1770.876848 
#> [38]	train-rmse:148.772578	test-rmse:1770.620438 
#> [39]	train-rmse:145.448460	test-rmse:1770.615717 
#> [40]	train-rmse:141.919898	test-rmse:1771.403732 
#> [41]	train-rmse:140.023894	test-rmse:1768.178922 
#> [42]	train-rmse:138.835579	test-rmse:1768.250647 
#> [43]	train-rmse:134.715782	test-rmse:1767.727257 
#> [44]	train-rmse:133.708627	test-rmse:1767.712262 
#> [45]	train-rmse:131.359896	test-rmse:1767.348169 
#> [46]	train-rmse:129.315551	test-rmse:1767.271794 
#> [47]	train-rmse:126.663079	test-rmse:1768.336564 
#> [48]	train-rmse:123.449975	test-rmse:1771.506021 
#> [49]	train-rmse:120.723515	test-rmse:1771.914632 
#> [50]	train-rmse:116.987646	test-rmse:1770.957913 
#> [51]	train-rmse:113.675563	test-rmse:1771.285163 
#> [52]	train-rmse:110.302305	test-rmse:1770.684697 
#> [53]	train-rmse:105.967421	test-rmse:1769.712296 
#> [54]	train-rmse:105.289869	test-rmse:1766.608436 
#> [55]	train-rmse:103.774474	test-rmse:1766.512894 
#> [56]	train-rmse:102.962973	test-rmse:1766.418135 
#> [57]	train-rmse:101.246207	test-rmse:1766.326857 
#> [58]	train-rmse:98.388259	test-rmse:1764.834174 
#> [59]	train-rmse:97.341114	test-rmse:1762.232105 
#> [60]	train-rmse:96.001068	test-rmse:1762.154763 
#> [61]	train-rmse:94.205784	test-rmse:1764.150357 
#> [62]	train-rmse:91.573428	test-rmse:1763.702795 
#> [63]	train-rmse:90.405158	test-rmse:1762.396145 
#> [64]	train-rmse:88.622261	test-rmse:1765.798959 
#> [65]	train-rmse:87.746766	test-rmse:1767.618248 
#> [66]	train-rmse:86.507148	test-rmse:1767.415449 
#> [67]	train-rmse:84.493733	test-rmse:1767.488290 
#> [68]	train-rmse:83.240083	test-rmse:1768.443047 
#> [69]	train-rmse:82.828157	test-rmse:1768.411466 
#> [70]	train-rmse:81.529083	test-rmse:1768.503565 
#> [1]	train-rmse:11676.716089	validation-rmse:12113.270065 
#> [2]	train-rmse:8354.095279	validation-rmse:8696.271124 
#> [3]	train-rmse:5989.394793	validation-rmse:6260.429097 
#> [4]	train-rmse:4310.489824	validation-rmse:4628.441962 
#> [5]	train-rmse:3109.404834	validation-rmse:3435.271189 
#> [6]	train-rmse:2250.237844	validation-rmse:2615.939332 
#> [7]	train-rmse:1640.817172	validation-rmse:2006.106114 
#> [8]	train-rmse:1209.100401	validation-rmse:1579.503857 
#> [9]	train-rmse:905.989475	validation-rmse:1283.353996 
#> [10]	train-rmse:691.590253	validation-rmse:1067.988327 
#> [11]	train-rmse:542.013279	validation-rmse:919.002767 
#> [12]	train-rmse:440.193932	validation-rmse:823.515971 
#> [13]	train-rmse:372.662046	validation-rmse:748.933995 
#> [14]	train-rmse:328.422724	validation-rmse:694.985378 
#> [15]	train-rmse:298.196321	validation-rmse:657.274858 
#> [16]	train-rmse:279.537645	validation-rmse:628.986743 
#> [17]	train-rmse:265.796462	validation-rmse:607.863714 
#> [18]	train-rmse:249.648340	validation-rmse:597.981856 
#> [19]	train-rmse:241.843262	validation-rmse:586.190119 
#> [20]	train-rmse:234.078816	validation-rmse:572.690798 
#> [21]	train-rmse:227.312846	validation-rmse:562.649213 
#> [22]	train-rmse:222.191300	validation-rmse:557.378325 
#> [23]	train-rmse:212.213766	validation-rmse:549.073475 
#> [24]	train-rmse:210.796199	validation-rmse:542.009897 
#> [25]	train-rmse:205.543606	validation-rmse:540.937959 
#> [26]	train-rmse:202.053346	validation-rmse:539.290564 
#> [27]	train-rmse:192.833947	validation-rmse:537.068297 
#> [28]	train-rmse:184.847917	validation-rmse:536.236451 
#> [29]	train-rmse:182.264282	validation-rmse:532.223915 
#> [30]	train-rmse:177.181996	validation-rmse:530.345016 
#> [31]	train-rmse:174.610467	validation-rmse:530.776009 
#> [32]	train-rmse:167.466793	validation-rmse:529.077005 
#> [33]	train-rmse:163.238027	validation-rmse:528.514103 
#> [34]	train-rmse:159.410908	validation-rmse:524.941065 
#> [35]	train-rmse:157.277497	validation-rmse:525.993721 
#> [36]	train-rmse:155.447400	validation-rmse:524.960444 
#> [37]	train-rmse:152.578687	validation-rmse:519.616286 
#> [38]	train-rmse:148.772578	validation-rmse:518.542838 
#> [39]	train-rmse:145.448460	validation-rmse:519.035313 
#> [40]	train-rmse:141.919898	validation-rmse:521.111818 
#> [41]	train-rmse:140.023894	validation-rmse:516.634528 
#> [42]	train-rmse:138.835579	validation-rmse:516.414941 
#> [43]	train-rmse:134.715782	validation-rmse:515.710450 
#> [44]	train-rmse:133.708627	validation-rmse:515.613351 
#> [45]	train-rmse:131.359896	validation-rmse:515.080537 
#> [46]	train-rmse:129.315551	validation-rmse:515.760335 
#> [47]	train-rmse:126.663079	validation-rmse:516.653327 
#> [48]	train-rmse:123.449975	validation-rmse:521.002099 
#> [49]	train-rmse:120.723515	validation-rmse:519.782429 
#> [50]	train-rmse:116.987646	validation-rmse:518.091430 
#> [51]	train-rmse:113.675563	validation-rmse:520.783069 
#> [52]	train-rmse:110.302305	validation-rmse:520.323780 
#> [53]	train-rmse:105.967421	validation-rmse:520.749124 
#> [54]	train-rmse:105.289869	validation-rmse:518.347020 
#> [55]	train-rmse:103.774474	validation-rmse:518.433615 
#> [56]	train-rmse:102.962973	validation-rmse:518.234254 
#> [57]	train-rmse:101.246207	validation-rmse:517.919822 
#> [58]	train-rmse:98.388259	validation-rmse:512.356774 
#> [59]	train-rmse:97.341114	validation-rmse:508.404032 
#> [60]	train-rmse:96.001068	validation-rmse:508.033100 
#> [61]	train-rmse:94.205784	validation-rmse:511.192710 
#> [62]	train-rmse:91.573428	validation-rmse:510.310022 
#> [63]	train-rmse:90.405158	validation-rmse:506.417421 
#> [64]	train-rmse:88.622261	validation-rmse:507.447312 
#> [65]	train-rmse:87.746766	validation-rmse:505.937490 
#> [66]	train-rmse:86.507148	validation-rmse:505.244917 
#> [67]	train-rmse:84.493733	validation-rmse:506.198471 
#> [68]	train-rmse:83.240083	validation-rmse:506.956349 
#> [69]	train-rmse:82.828157	validation-rmse:507.031100 
#> [70]	train-rmse:81.529083	validation-rmse:507.084332 
#> [1] 
#> [1] "Resampling number 2 of 2,"
#> [1] 
#> Number of parameters (weights and biases) to estimate: 18 
#> Nguyen-Widrow method
#> Scaling factor= 0.700606 
#> gamma= 17.7011 	 alpha= 2.4823 	 beta= 40898.3 
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> [1]	train-rmse:13091.289080	test-rmse:13630.503919 
#> [2]	train-rmse:9808.091032	test-rmse:10344.663415 
#> [3]	train-rmse:7638.152950	test-rmse:8206.741234 
#> [4]	train-rmse:6271.808237	test-rmse:6899.227719 
#> [5]	train-rmse:5440.278268	test-rmse:6093.113194 
#> [6]	train-rmse:4958.582646	test-rmse:5643.977695 
#> [7]	train-rmse:4671.873405	test-rmse:5361.682750 
#> [8]	train-rmse:4510.961951	test-rmse:5225.410893 
#> [9]	train-rmse:4407.075416	test-rmse:5166.147031 
#> [10]	train-rmse:4333.013751	test-rmse:5137.778770 
#> [11]	train-rmse:4274.336260	test-rmse:5109.604335 
#> [12]	train-rmse:4241.165284	test-rmse:5099.030387 
#> [13]	train-rmse:4179.703253	test-rmse:5110.298374 
#> [14]	train-rmse:4158.087222	test-rmse:5108.541624 
#> [15]	train-rmse:4108.246083	test-rmse:5122.163865 
#> [16]	train-rmse:4054.580221	test-rmse:5116.024031 
#> [17]	train-rmse:4033.934735	test-rmse:5114.840698 
#> [18]	train-rmse:4009.152807	test-rmse:5119.583826 
#> [19]	train-rmse:3994.714299	test-rmse:5131.453185 
#> [20]	train-rmse:3965.216102	test-rmse:5130.261150 
#> [21]	train-rmse:3929.727757	test-rmse:5130.376266 
#> [22]	train-rmse:3899.849011	test-rmse:5148.412747 
#> [23]	train-rmse:3863.210544	test-rmse:5156.143323 
#> [24]	train-rmse:3833.324067	test-rmse:5159.078984 
#> [25]	train-rmse:3808.319000	test-rmse:5159.406137 
#> [26]	train-rmse:3802.004006	test-rmse:5157.904244 
#> [27]	train-rmse:3790.773068	test-rmse:5167.781086 
#> [28]	train-rmse:3769.378641	test-rmse:5174.225592 
#> [29]	train-rmse:3743.220983	test-rmse:5175.681581 
#> [30]	train-rmse:3735.051610	test-rmse:5174.663357 
#> [31]	train-rmse:3707.568300	test-rmse:5179.279715 
#> [32]	train-rmse:3699.487539	test-rmse:5189.911333 
#> [33]	train-rmse:3684.718906	test-rmse:5190.955718 
#> [34]	train-rmse:3670.892633	test-rmse:5200.245327 
#> [35]	train-rmse:3647.968412	test-rmse:5199.936194 
#> [36]	train-rmse:3629.423091	test-rmse:5227.782163 
#> [37]	train-rmse:3609.326472	test-rmse:5242.205034 
#> [38]	train-rmse:3599.731539	test-rmse:5258.550981 
#> [39]	train-rmse:3582.300571	test-rmse:5275.640585 
#> [40]	train-rmse:3576.960501	test-rmse:5274.845607 
#> [41]	train-rmse:3566.560989	test-rmse:5286.814438 
#> [42]	train-rmse:3544.631542	test-rmse:5288.739355 
#> [43]	train-rmse:3511.323302	test-rmse:5298.553097 
#> [44]	train-rmse:3488.788131	test-rmse:5295.640711 
#> [45]	train-rmse:3470.892692	test-rmse:5302.095740 
#> [46]	train-rmse:3468.460291	test-rmse:5302.163443 
#> [47]	train-rmse:3446.352161	test-rmse:5296.598495 
#> [48]	train-rmse:3442.269105	test-rmse:5296.162547 
#> [49]	train-rmse:3423.783246	test-rmse:5300.195450 
#> [50]	train-rmse:3397.813321	test-rmse:5306.316790 
#> [51]	train-rmse:3390.091228	test-rmse:5311.962685 
#> [52]	train-rmse:3384.326612	test-rmse:5316.354518 
#> [53]	train-rmse:3381.318165	test-rmse:5314.323833 
#> [54]	train-rmse:3361.804524	test-rmse:5316.939774 
#> [55]	train-rmse:3353.521697	test-rmse:5325.831293 
#> [56]	train-rmse:3331.197663	test-rmse:5324.384677 
#> [57]	train-rmse:3314.456390	test-rmse:5322.747836 
#> [58]	train-rmse:3302.858412	test-rmse:5332.477679 
#> [59]	train-rmse:3288.118895	test-rmse:5341.693911 
#> [60]	train-rmse:3285.743962	test-rmse:5341.174745 
#> [61]	train-rmse:3272.264118	test-rmse:5349.408116 
#> [62]	train-rmse:3258.429782	test-rmse:5355.972682 
#> [63]	train-rmse:3239.456997	test-rmse:5363.485660 
#> [64]	train-rmse:3222.385409	test-rmse:5374.242503 
#> [65]	train-rmse:3203.538543	test-rmse:5370.719510 
#> [66]	train-rmse:3190.452087	test-rmse:5375.052057 
#> [67]	train-rmse:3179.422155	test-rmse:5386.937062 
#> [68]	train-rmse:3171.117726	test-rmse:5392.472189 
#> [69]	train-rmse:3151.548317	test-rmse:5400.540885 
#> [70]	train-rmse:3148.761000	test-rmse:5401.073211 
#> [1]	train-rmse:13091.289080	validation-rmse:12457.446551 
#> [2]	train-rmse:9808.091032	validation-rmse:9038.797199 
#> [3]	train-rmse:7638.152950	validation-rmse:6753.584515 
#> [4]	train-rmse:6271.808237	validation-rmse:5290.812861 
#> [5]	train-rmse:5440.278268	validation-rmse:4388.524901 
#> [6]	train-rmse:4958.582646	validation-rmse:3905.637460 
#> [7]	train-rmse:4671.873405	validation-rmse:3636.416234 
#> [8]	train-rmse:4510.961951	validation-rmse:3555.576689 
#> [9]	train-rmse:4407.075416	validation-rmse:3508.388911 
#> [10]	train-rmse:4333.013751	validation-rmse:3494.811886 
#> [11]	train-rmse:4274.336260	validation-rmse:3500.076369 
#> [12]	train-rmse:4241.165284	validation-rmse:3478.591434 
#> [13]	train-rmse:4179.703253	validation-rmse:3506.376045 
#> [14]	train-rmse:4158.087222	validation-rmse:3504.944458 
#> [15]	train-rmse:4108.246083	validation-rmse:3506.656332 
#> [16]	train-rmse:4054.580221	validation-rmse:3494.051740 
#> [17]	train-rmse:4033.934735	validation-rmse:3495.680095 
#> [18]	train-rmse:4009.152807	validation-rmse:3517.582259 
#> [19]	train-rmse:3994.714299	validation-rmse:3514.855017 
#> [20]	train-rmse:3965.216102	validation-rmse:3520.080901 
#> [21]	train-rmse:3929.727757	validation-rmse:3522.362626 
#> [22]	train-rmse:3899.849011	validation-rmse:3518.369417 
#> [23]	train-rmse:3863.210544	validation-rmse:3517.637396 
#> [24]	train-rmse:3833.324067	validation-rmse:3524.609897 
#> [25]	train-rmse:3808.319000	validation-rmse:3558.580507 
#> [26]	train-rmse:3802.004006	validation-rmse:3560.385375 
#> [27]	train-rmse:3790.773068	validation-rmse:3564.716215 
#> [28]	train-rmse:3769.378641	validation-rmse:3593.372386 
#> [29]	train-rmse:3743.220983	validation-rmse:3625.992174 
#> [30]	train-rmse:3735.051610	validation-rmse:3624.836884 
#> [31]	train-rmse:3707.568300	validation-rmse:3624.893930 
#> [32]	train-rmse:3699.487539	validation-rmse:3629.068284 
#> [33]	train-rmse:3684.718906	validation-rmse:3633.289993 
#> [34]	train-rmse:3670.892633	validation-rmse:3634.266711 
#> [35]	train-rmse:3647.968412	validation-rmse:3624.068876 
#> [36]	train-rmse:3629.423091	validation-rmse:3630.525040 
#> [37]	train-rmse:3609.326472	validation-rmse:3660.669123 
#> [38]	train-rmse:3599.731539	validation-rmse:3659.725631 
#> [39]	train-rmse:3582.300571	validation-rmse:3662.490896 
#> [40]	train-rmse:3576.960501	validation-rmse:3665.939504 
#> [41]	train-rmse:3566.560989	validation-rmse:3677.067603 
#> [42]	train-rmse:3544.631542	validation-rmse:3686.459232 
#> [43]	train-rmse:3511.323302	validation-rmse:3695.704252 
#> [44]	train-rmse:3488.788131	validation-rmse:3690.438384 
#> [45]	train-rmse:3470.892692	validation-rmse:3693.400884 
#> [46]	train-rmse:3468.460291	validation-rmse:3693.740255 
#> [47]	train-rmse:3446.352161	validation-rmse:3708.612585 
#> [48]	train-rmse:3442.269105	validation-rmse:3710.635073 
#> [49]	train-rmse:3423.783246	validation-rmse:3725.372095 
#> [50]	train-rmse:3397.813321	validation-rmse:3728.421904 
#> [51]	train-rmse:3390.091228	validation-rmse:3727.420448 
#> [52]	train-rmse:3384.326612	validation-rmse:3732.710226 
#> [53]	train-rmse:3381.318165	validation-rmse:3731.317976 
#> [54]	train-rmse:3361.804524	validation-rmse:3732.625861 
#> [55]	train-rmse:3353.521697	validation-rmse:3729.344454 
#> [56]	train-rmse:3331.197663	validation-rmse:3733.489591 
#> [57]	train-rmse:3314.456390	validation-rmse:3733.012205 
#> [58]	train-rmse:3302.858412	validation-rmse:3734.186624 
#> [59]	train-rmse:3288.118895	validation-rmse:3744.187566 
#> [60]	train-rmse:3285.743962	validation-rmse:3744.330255 
#> [61]	train-rmse:3272.264118	validation-rmse:3759.310329 
#> [62]	train-rmse:3258.429782	validation-rmse:3765.135142 
#> [63]	train-rmse:3239.456997	validation-rmse:3780.107207 
#> [64]	train-rmse:3222.385409	validation-rmse:3795.026810 
#> [65]	train-rmse:3203.538543	validation-rmse:3794.253293 
#> [66]	train-rmse:3190.452087	validation-rmse:3796.907675 
#> [67]	train-rmse:3179.422155	validation-rmse:3804.137027 
#> [68]	train-rmse:3171.117726	validation-rmse:3807.449074 
#> [69]	train-rmse:3151.548317	validation-rmse:3801.748059 
#> [70]	train-rmse:3148.761000	validation-rmse:3802.394612 
#> [1] 
#> [1] "Working on the Ensembles section"
#> [1] 
#> Number of parameters (weights and biases) to estimate: 54 
#> Nguyen-Widrow method
#> Scaling factor= 0.7014119 
#> gamma= 34.1775 	 alpha= 8.1561 	 beta= 16572.21 
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> Using 100 trees...
#> [1]	train-rmse:12724.052969	test-rmse:14640.924241 
#> [2]	train-rmse:9116.585933	test-rmse:10546.379808 
#> [3]	train-rmse:6529.850289	test-rmse:7564.627689 
#> [4]	train-rmse:4702.598805	test-rmse:5412.191719 
#> [5]	train-rmse:3401.435874	test-rmse:3870.122476 
#> [6]	train-rmse:2472.108286	test-rmse:2760.504988 
#> [7]	train-rmse:1815.356562	test-rmse:1956.408483 
#> [8]	train-rmse:1355.625334	test-rmse:1431.313264 
#> [9]	train-rmse:1035.794014	test-rmse:1063.434894 
#> [10]	train-rmse:811.276038	test-rmse:823.445392 
#> [11]	train-rmse:652.925493	test-rmse:665.740591 
#> [12]	train-rmse:543.384145	test-rmse:577.451751 
#> [13]	train-rmse:470.800939	test-rmse:514.079310 
#> [14]	train-rmse:418.956563	test-rmse:481.932315 
#> [15]	train-rmse:383.445948	test-rmse:466.146242 
#> [16]	train-rmse:357.261637	test-rmse:451.786768 
#> [17]	train-rmse:335.656047	test-rmse:454.429125 
#> [18]	train-rmse:322.365753	test-rmse:450.051414 
#> [19]	train-rmse:310.584327	test-rmse:444.676679 
#> [20]	train-rmse:301.509125	test-rmse:440.389156 
#> [21]	train-rmse:289.067172	test-rmse:443.403698 
#> [22]	train-rmse:281.810900	test-rmse:442.472360 
#> [23]	train-rmse:278.260614	test-rmse:441.138512 
#> [24]	train-rmse:275.446320	test-rmse:440.451245 
#> [25]	train-rmse:273.358112	test-rmse:440.758948 
#> [26]	train-rmse:268.716735	test-rmse:437.983261 
#> [27]	train-rmse:263.819563	test-rmse:441.979749 
#> [28]	train-rmse:255.069287	test-rmse:442.507715 
#> [29]	train-rmse:247.663007	test-rmse:447.037976 
#> [30]	train-rmse:240.255951	test-rmse:443.359188 
#> [31]	train-rmse:235.826586	test-rmse:445.509123 
#> [32]	train-rmse:229.610376	test-rmse:444.769793 
#> [33]	train-rmse:222.298984	test-rmse:440.678699 
#> [34]	train-rmse:216.174118	test-rmse:433.669890 
#> [35]	train-rmse:212.831934	test-rmse:433.861987 
#> [36]	train-rmse:209.626321	test-rmse:432.733279 
#> [37]	train-rmse:203.864102	test-rmse:432.280044 
#> [38]	train-rmse:195.816531	test-rmse:428.378747 
#> [39]	train-rmse:190.000485	test-rmse:429.753185 
#> [40]	train-rmse:187.894802	test-rmse:429.957351 
#> [41]	train-rmse:183.969858	test-rmse:430.278355 
#> [42]	train-rmse:180.523092	test-rmse:428.815031 
#> [43]	train-rmse:178.391632	test-rmse:428.781370 
#> [44]	train-rmse:172.772266	test-rmse:425.565173 
#> [45]	train-rmse:170.627432	test-rmse:424.120128 
#> [46]	train-rmse:165.422348	test-rmse:417.200456 
#> [47]	train-rmse:160.149285	test-rmse:417.709738 
#> [48]	train-rmse:157.189350	test-rmse:416.230850 
#> [49]	train-rmse:154.534444	test-rmse:417.394454 
#> [50]	train-rmse:153.278806	test-rmse:416.659392 
#> [51]	train-rmse:149.191984	test-rmse:414.706460 
#> [52]	train-rmse:146.840712	test-rmse:413.702198 
#> [53]	train-rmse:145.331981	test-rmse:414.176287 
#> [54]	train-rmse:142.234330	test-rmse:411.631257 
#> [55]	train-rmse:140.538872	test-rmse:412.002827 
#> [56]	train-rmse:139.201399	test-rmse:411.476135 
#> [57]	train-rmse:137.785678	test-rmse:410.661655 
#> [58]	train-rmse:135.971646	test-rmse:409.224341 
#> [59]	train-rmse:134.686016	test-rmse:407.637654 
#> [60]	train-rmse:130.880705	test-rmse:405.182359 
#> [61]	train-rmse:126.538542	test-rmse:405.450475 
#> [62]	train-rmse:124.015668	test-rmse:402.730183 
#> [63]	train-rmse:123.132362	test-rmse:402.710735 
#> [64]	train-rmse:119.162464	test-rmse:404.637977 
#> [65]	train-rmse:116.686496	test-rmse:401.521048 
#> [66]	train-rmse:113.962333	test-rmse:402.284958 
#> [67]	train-rmse:112.316272	test-rmse:401.461360 
#> [68]	train-rmse:108.790818	test-rmse:399.260551 
#> [69]	train-rmse:105.822807	test-rmse:400.357967 
#> [70]	train-rmse:102.623468	test-rmse:397.184806 
#> [1]	train-rmse:12724.052969	validation-rmse:11400.337843 
#> [2]	train-rmse:9116.585933	validation-rmse:7834.587699 
#> [3]	train-rmse:6529.850289	validation-rmse:5474.873860 
#> [4]	train-rmse:4702.598805	validation-rmse:3953.845723 
#> [5]	train-rmse:3401.435874	validation-rmse:2809.751468 
#> [6]	train-rmse:2472.108286	validation-rmse:2015.515345 
#> [7]	train-rmse:1815.356562	validation-rmse:1455.988851 
#> [8]	train-rmse:1355.625334	validation-rmse:1090.837307 
#> [9]	train-rmse:1035.794014	validation-rmse:841.283415 
#> [10]	train-rmse:811.276038	validation-rmse:673.595426 
#> [11]	train-rmse:652.925493	validation-rmse:574.501661 
#> [12]	train-rmse:543.384145	validation-rmse:516.249070 
#> [13]	train-rmse:470.800939	validation-rmse:485.501170 
#> [14]	train-rmse:418.956563	validation-rmse:478.379636 
#> [15]	train-rmse:383.445948	validation-rmse:476.521543 
#> [16]	train-rmse:357.261637	validation-rmse:471.058626 
#> [17]	train-rmse:335.656047	validation-rmse:468.855300 
#> [18]	train-rmse:322.365753	validation-rmse:466.749389 
#> [19]	train-rmse:310.584327	validation-rmse:464.924841 
#> [20]	train-rmse:301.509125	validation-rmse:462.223585 
#> [21]	train-rmse:289.067172	validation-rmse:460.628258 
#> [22]	train-rmse:281.810900	validation-rmse:461.623640 
#> [23]	train-rmse:278.260614	validation-rmse:461.163535 
#> [24]	train-rmse:275.446320	validation-rmse:459.103782 
#> [25]	train-rmse:273.358112	validation-rmse:459.263915 
#> [26]	train-rmse:268.716735	validation-rmse:457.391954 
#> [27]	train-rmse:263.819563	validation-rmse:456.875335 
#> [28]	train-rmse:255.069287	validation-rmse:458.686903 
#> [29]	train-rmse:247.663007	validation-rmse:451.417507 
#> [30]	train-rmse:240.255951	validation-rmse:451.718172 
#> [31]	train-rmse:235.826586	validation-rmse:451.653052 
#> [32]	train-rmse:229.610376	validation-rmse:452.167795 
#> [33]	train-rmse:222.298984	validation-rmse:456.432236 
#> [34]	train-rmse:216.174118	validation-rmse:452.849371 
#> [35]	train-rmse:212.831934	validation-rmse:451.098592 
#> [36]	train-rmse:209.626321	validation-rmse:449.759982 
#> [37]	train-rmse:203.864102	validation-rmse:450.385413 
#> [38]	train-rmse:195.816531	validation-rmse:449.949209 
#> [39]	train-rmse:190.000485	validation-rmse:450.198795 
#> [40]	train-rmse:187.894802	validation-rmse:450.878040 
#> [41]	train-rmse:183.969858	validation-rmse:451.374028 
#> [42]	train-rmse:180.523092	validation-rmse:453.812628 
#> [43]	train-rmse:178.391632	validation-rmse:452.516319 
#> [44]	train-rmse:172.772266	validation-rmse:452.371676 
#> [45]	train-rmse:170.627432	validation-rmse:452.558629 
#> [46]	train-rmse:165.422348	validation-rmse:449.206459 
#> [47]	train-rmse:160.149285	validation-rmse:452.407930 
#> [48]	train-rmse:157.189350	validation-rmse:456.019889 
#> [49]	train-rmse:154.534444	validation-rmse:457.472426 
#> [50]	train-rmse:153.278806	validation-rmse:456.394221 
#> [51]	train-rmse:149.191984	validation-rmse:454.963080 
#> [52]	train-rmse:146.840712	validation-rmse:455.116413 
#> [53]	train-rmse:145.331981	validation-rmse:456.696645 
#> [54]	train-rmse:142.234330	validation-rmse:456.481966 
#> [55]	train-rmse:140.538872	validation-rmse:455.651668 
#> [56]	train-rmse:139.201399	validation-rmse:457.108435 
#> [57]	train-rmse:137.785678	validation-rmse:456.691594 
#> [58]	train-rmse:135.971646	validation-rmse:458.247285 
#> [59]	train-rmse:134.686016	validation-rmse:458.535375 
#> [60]	train-rmse:130.880705	validation-rmse:459.310124 
#> [61]	train-rmse:126.538542	validation-rmse:456.971244 
#> [62]	train-rmse:124.015668	validation-rmse:456.975845 
#> [63]	train-rmse:123.132362	validation-rmse:456.301918 
#> [64]	train-rmse:119.162464	validation-rmse:454.667804 
#> [65]	train-rmse:116.686496	validation-rmse:456.081477 
#> [66]	train-rmse:113.962333	validation-rmse:455.722177 
#> [67]	train-rmse:112.316272	validation-rmse:455.044131 
#> [68]	train-rmse:108.790818	validation-rmse:451.944869 
#> [69]	train-rmse:105.822807	validation-rmse:451.663539 
#> [70]	train-rmse:102.623468	validation-rmse:450.908313 





#> [1] 
#> [1] "0.05 and 0.95 outliers for age, column number 1"
#> [1] "IQR = 24, 0.05 = 18 0.95 = 62"
#> [1] age      sex      bmi      children smoker   region   y       
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for sex, column number 2"
#> [1] "IQR = 1, 0.05 = 1 0.95 = 2"
#> [1] age      sex      bmi      children smoker   region   y       
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for bmi, column number 3"
#> [1] "IQR = 8.3975, 0.05 = 21.256 0.95 = 41.106"
#> [1] age      sex      bmi      children smoker   region   y       
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for children, column number 4"
#> [1] "IQR = 2, 0.05 = 0 0.95 = 3"
#> [1] age      sex      bmi      children smoker   region   y       
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for smoker, column number 5"
#> [1] "IQR = 0, 0.05 = 1 0.95 = 2"
#> [1] age      sex      bmi      children smoker   region   y       
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for region, column number 6"
#> [1] "IQR = 1, 0.05 = 1 0.95 = 4"
#> [1] age      sex      bmi      children smoker   region   y       
#> <0 rows> (or 0-length row.names)
#> [1] 
#> [1] 
#> [1] "0.05 and 0.95 outliers for y, column number 7"
#> [1] "IQR = 11899.625365, 0.05 = 1757.7534 0.95 = 41181.8277874999"
#>      age sex    bmi children smoker region        y
#> 544   54   1 47.410        0      2      3 63770.43
#> 1231  52   2 34.485        3      2      2 60021.40
#> 1301  45   2 30.360        0      2      3 62592.87
#> [1] 
#> $head_of_data
#> 
#> $accuracy_plot

#> 
#> $overfitting_plot

#> 
#> $histograms

#> 
#> $boxplots

#> 
#> $predictor_vs_target

#> 
#> $final_results_table
#> 
#> $data_correlation
#> 
#> $data_summary
#> 
#> $head_of_ensemble
#> 
#> $ensemble_correlation
#> 
#> $accuracy_barchart

#> 
#> $train_vs_holdout

#> 
#> $duration_barchart

#> 
#> $overfitting_barchart

#> 
#> $bias_barchart

#> 
#> $MSE_barchart

#> 
#> $MAE_barchart

#> 
#> $SSE_barchart

#> 
#> $bias_plot

#> 
#> $MSE_plot

#> 
#> $MAE_plot

#> 
#> $SSE_plot

#> 
#> $colnum
#> [1] 7
#> 
#> $numresamples
#> [1] 2
#> 
#> $save_all_trained_modesl
#> [1] "N"
#> 
#> $remove_ensemble_correlations_greater_than
#> [1] 1
#> 
#> $train_amount
#> [1] 0.6
#> 
#> $test_amount
#> [1] 0.2
#> 
#> $validation_amount
#> [1] 0.2
#>